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New Foreword

On October 1, 2001 Axiom was withdrawn from the market and ended life as a commer-
cial product. On September 3, 2002 Axiom was released under the Modified BSD license,
including this document. On August 27, 2003 Axiom was released as free and open source
software available for download from the Free Software Foundation’s website, Savannah.

Work on Axiom has had the generous support of the Center for Algorithms and Interactive
Scientific Computation (CAISS) at City College of New York. Special thanks go to Dr.
Gilbert Baumslag for his support of the long term goal.

The online version of this documentation is roughly 1000 pages. In order to make printed
versions we’ve broken it up into three volumes. The first volume is tutorial in nature. The
second volume is for programmers. The third volume is reference material. We’ve also added
a fourth volume for developers. All of these changes represent an experiment in print-on-
demand delivery of documentation. Time will tell whether the experiment succeeded.

Axiom has been in existence for over thirty years. It is estimated to contain about three
hundred man-years of research and has, as of September 3, 2003, 143 people listed in the
credits. All of these people have contributed directly or indirectly to making Axiom available.
Axiom is being passed to the next generation. I’m looking forward to future milestones.

With that in mind I’ve introduced the theme of the “30 year horizon”. We must invent
the tools that support the Computational Mathematician working 30 years from now. How
will research be done when every bit of mathematical knowledge is online and instantly
available? What happens when we scale Axiom by a factor of 100, giving us 1.1 million
domains? How can we integrate theory with code? How will we integrate theorems and
proofs of the mathematics with space-time complexity proofs and running code? What
visualization tools are needed? How do we support the conceptual structures and semantics
of mathematics in effective ways? How do we support results from the sciences? How do we
teach the next generation to be effective Computational Mathematicians?

The “30 year horizon” is much nearer than it appears.

Tim Daly
CAISS, City College of New York
November 10, 2003 ((iHy))



Chapter 1

The Axiom System by James H.
Davenport

This is (mostly) quoted verbatim, with permission, from Davenport[Dave92a].

1.1 A little history

In 1978 the present author spent two months at IBM Yorktown Heights, as part of the
Computer Algebra Group, which had developed the Scratchpad-1 computer algebra system.
Though this system never saw the light of day outside IBM, it was at the time a competitor
for Macsyma and Reduce. All systems had struggled with the problems of writing ever more
complicated algebraic algorithms, and handling the growth of the systems. Zippel has esti-
mated that Macsyma, at its heyday, contained six different Gaussian elimination algorithms,
whether because they were handling different data types, or because the authors were un-
aware of the other ones, or for more subtle reasons. Davenport[Dave81] had been having
similar problems with Reduce, and a feeling of discontent among algorithm implementors
was common.

The reactions of the computer algebra system-builders to the complexity are interesting to
tabulate.

1



2 CHAPTER 1. THE AXIOM SYSTEM BY JAMES H. DAVENPORT

Macsyma embarked on the, ultimately futile, “new rational function” project,
which was to have re-written much of the algebraic kernel in a more
mathematically structured way, but which was unable to maintain back-
wards compatibility.

Reduce developed into Reduce 3, with its concept of domains , which meant that
new constant domains could be added relatively simply See Bradford et
al.[Brad86]

Waterloo’s emerging team decided that none of the existing solutions was right,
and opted for a new design based round a very small kernel, typically
not knowing any algebra, and loadable modules, which would contain the
algebraic knowledge of the system. This became the Maple system. Over
the years, the definition of the kernel has changed, as it became obvious
that certain algorithms, e.g. modular ones, could not be implemented
efficiently in the interpreted modules.

MuMath and its successor Derive based themselves on the philosophy that “what-
ever fitted on a PC” was much closer to most users’ requirements than
“the best possible mathematics”, and, in terms of the number of users,
they are certainly correct.

IBM embarked on a lengthy period of algebraic reflection, prototyping and
experimentation, sporadically reported in the literature Davenport &
Jenks[Dave81a] and Jenks & Trager[Jenk81] first product of this pro-
cess). Axiom is the end product of this process of reflection.

1.2 Axiom’s philosophy

Axiom shares with Maple the desire to build a system consisting of a kernel and loadable
modules, written in an appropriately high-level language: the kernel knows very little algebra
(in the classical sense of the term) and the modules define what algebraic facilities are present.
The resemblance ends here, though. Maple’s modules are interpreted, sacrificing the ultimate
in performance for small size and rapid loading, whereas Axiom’s modules are compiled into
machine code for speed, much as in Reduce or Macsyma, but also for type analysis and
constructing the database for the information system. There are certainly arguments in
favour of Maple’s approach, though it does assume that the designers know a priori which
primitives to build into the kernel to make a fast algebra system. Hence Maple is relatively
fast at those operations for which it was designed, but attempts to make it into, say, a
computational group theory package, have not been particularly successful, since the inner
loops have been taking place in interpreted code. Another difference is, regrettably, that
Axiom’s kernel is currently far larger than Maple’s, largely due to the genericity of the type
system it implements.

Axiom’s kernel designers took the view that they did not know what algebraic facilities would
be wanted, nor how they would be programmed. The only real assumption made was that
the computations would be largely symbolic, and hence big integers, lists, vectors and trees
were emphasised over, say, the efficient compilation of fixed-precision floating-point, which
is left to externally-compiled code. There are also assumptions in the user interface about
the wish to convert symbols into polynomials where appropriate, but these are in fact not
fixed. The graphics facilities provided are more oriented towards the production of graphs
of functions than other kinds of illustrations, but new facilities could easily be added.

Principle 1. AXIOM has an interpreter for interactive use, much like any other system,
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and a compiler for creating new user-defined data types. The compiler emphasises strict
type-checking, whilst the interpreter is more oriented towards ease of use.

The complexity of the algebraic facilities envisaged for Axiom required a data-typing mech-
anism over and above that provided by Lisp. To quote a very simple example, 1 + x + x2

could be either a polynomial or a truncated Taylor series, but the square of the polynomial
is 1 + 2x + 3x2 + 2x3 + x4 whereas the square of the series is 1 + 2x + 3x2. Similarly, if 2
represents the integer 2, then 2+2 = 4, whereas if 2 represents the congruence class “integers
congruent to 2 modulo 3” then 2 + 2 = 1 (and, of course, 4 = 1 as well). Similarly, the list
(1,2) is not the same as the list (2,1), but they should be regarded as the same if they repre-
sent (unordered) sets, and so on. In fact, the data typing requirements of computer algebra
are so dynamic – the authors cannot predict what types the users will call for, explicitly or
implicitly – and so rich that no existing language was suitable for expressing them. Hence
the decision was taken that Axiom would have its own independent typing system.

This typing system, which underpins much of the rest of Axiom, has to solve the problems
that Macsyma and Reduce have. Macsyma’s typing system suffers, essentially, from the n2

problem – every type has to know about every other type. This works when there are only
a few types, and Macsyma has “general expression”, “rational function” (printed with /R/
), and “Taylor series” (printed with /T/ ): adding more types would be difficult.

Reduce’s method of specifying domains is largely global: for example one specifies the mod-
ular domain by issuing the command on modular;. One has then to be sure that all calcu-
lations are intended to be modular and that values being computed will not later be used
as polynomial exponents, loop indices or whatever. There is much scope for hard-to-detect
bugs in this area. The other drawback of Reduce’s scheme is that it really only applies to
constant domains. This works well for floating point or complex coefficients, but has its
weaknesses when it comes to handling Taylor series. For example

1: load tps; % truncated power series;

2: ps(cos x,x,0);

1 2 1 4 1 6 7

{1 - (---)*X + (----)*X - (-----)*X + O(X )}

2 24 720

3: ws-1;

1 2 1 4 1 6 7

{ - (---)*X + (----)*X - (-----)*X + O(X )}

2 24 720

4: ps(sin x,x,0);

1 3 1 5 7

{X - (---)*X + (-----)*X +O(X )}

6 120

5:ws-x;

1 3 1 5 7
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- X + {X - (---)*X + (-----)*X +O(X )}

6 120

6: ws 4 - ps(x,x,0);

1 3 1 5 7

- (---)*X + (-----)*X +O(X )}

6 120

The spurious power series expansion at line 6: is necessary to avoid the confusion at line 5:,
where the variable x is separated from the power series in x.

1.3 Axiom’s typing scheme

The typing scheme of Axiom can be described as a two-level typing scheme with single
inheritance of types and multiple inheritance of meta-types. What does this mean, when
stripped of the jargon? The first piece of jargon we wish to remove is the word “type”, which
is so heavily used in computer science that it has practically ceased to have any meaning at
all. The word that most nearly corresponds in Axiom is the word domain, as we shall see.

Definition 1. A domain is a set of values (possibly infinite), and the operations which can
be performed on them.

This corresponds rather closely to a “data type” in much modern programming language
theory.

Principle 2. Every internal Axiom data object belongs to one and only one domain.

Thus the integer “2” belongs to the domain Integer, whereas the congruence class modulo
3 “2” belongs to the domain IntegerMod(3), which can also be written as IntegerMod 3,
thanks to the following.

Convention 1. Juxtaposition corresponds to (unary) function application.

This corresponds with the traditional mathematical convention that sin x means the same
as sin(x). The user should be warned, however, that juxtaposition has a high precedence,
and that sin x**2 parses as (sin x)**2 and not as sin(x**2). This just shows the richness
of mathematical notation that formal grammars of any kind find hard to capture.

Principle 2 can be seen in the following mini-session with Axiom:

->a:Integer

->b:IntegerMod(3)

->a:=2

(3) 2

->a:=a+a

(4) 4

->b:=2

(5) 2
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->b:=b+b

(6) 1

The first two lines declare the domains to which the values of a and b may belong – loosely
speaking the types of the variables a and b – then they are given values, which are added.
As we said earlier, a + a = 4, whereas b + b = 1. This may appear confusing, so let’s run
though the same session, but asking Axiom to print out the domains of the various values.
This is done by means of the system command )set message type on.

Convention 2 (borrowed from APL). All system commands, i.e. those that do not per-
form, or affect the performance of, algebraic operations, begin with ). In general, they may
be contracted as far as is unambiguous, so that )set message type on can be contracted
as far as )se m ty on

In addition to the Hyperdoc help system, information about system commands can be found
using )help.

->a:Integer

Type: Void

->b:IntegerMod(3)

Type: Void

->a:=2

(3) 2

Type: Integer

->a:=a+a

(4) 4

Type: Integer

->b:=2

(5) 2

Type: IntegerMod 3

->b:=b+b

(6) 1

Type: IntegerMod 3

Note that the declarations themselves are algebraic commands, and therefore their results
must belong to a domain: in this case the Void domain. The numbers before the values can
be used to refer to these values later.

Convention 3. The symbol % refers to the most recently computed proper value (i.e. not
of the Void domain). %%(n), or %%n, refers to the value numbered n, if n is a positive
integer. If n is a negative integer, %%(n) refers to the value of the |n|’th previous step.
Also, %pi refers to π, %e to e ≈ 2.718281828 and %i to

√
−1

Note that % is not a synonym for %%(-1), since if the previous step were a declaration,
then %%(-1) would belong to the domain Void, whereas % would refer to the last non-void
object.

Principle 2 has an apparent exception, which we can see in the example above if, instead of
writing a:=a+a, we had just tried a+a, i.e. asked for the value to calculated, but not to
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replace the old a.

->a+a

(4) 4

Type: PositiveInteger

The 4 now belongs to PositiveInteger whereas it used to belong to Integer, yet we
are performing the same calculation. The answer is that PositiveInteger is not actually
a separate domain from Integer, rather it is a sub-domain (a concept we shall define
formally later). Whilst it is possible for users to add new sub-domains to Axiom, there are
two built-in ones, with the inclusion relationships

PositiveInteger ⊂ NonNegativeInteger ⊂ Integer

and a general rule about Union domains that will be explained later. An element of a domain
which is also an element of a sub-domain can move freely to a larger sub-domain, or to the
whole domain, as required. The reason for the existence of these sub-domains is to allow
more thorough type-checking: for example a square matrix has to have a dimension which is a
NonNegativeInteger, and it only makes sense to raise polynomials to NonNegativeInteger
powers. Similarly, the argument to IntegerMod must be a PositiveInteger. In order
to make interactive use easier, the interpreter will automatically convert elements of sub-
domains into those sub-domains. This can be summarised as follows.

Principle 3. Values can freely move from sub-domains to larger ones, and, in the interpreter
only, in the other direction, provided that this conversion is legitimate.

Compilers clearly can’t move from a large domain to a smaller one, since they have no idea
whether such a contraction will always be possible – if the programmer knows that it will
always be possible, they have to declare the fact.

1.3.1 Aren’t all these types confusing?

The casual user need not concern themselves with the type system: those functions that
most other systems provide, and which correspond to general algebra and calculus, work
through the type system provided. For example, the following session could be taken from
any algebra system.

->sin(x)

(1) sin(x)

->integrate(%,x)

(2) - cos(x)

->series (%,x=%pi/2)

(3)

%pi 1 %pi 3 1 %pi 5 1 %pi 7

(x - ---) - - (x - ---) + --- (x - ---) - ---- (x - ---)

2 6 2 120 2 5040 2

+

1 %pi 9 1 %pi 11 %pi 12

------ (x - ---) - -------- (x - ---) + O((x - ---) )
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362880 2 39916800 2 2

->integrate %

(4)

1 %pi 2 1 %pi 4 1 %pi 6 1 %pi 8

- ( - ---) - -- (x - ---) + --- (x - ---) - ----- (x - ---)

2 2 24 2 720 2 40320 2

+

1 %pi 10 1 %pi 12 %pi 13

------- (x - ---) - --------- (x - ---) + O((x - ---) )

3628800 2 479001600 2 2

We note that the second use of integrate did not require, and indeed can not be given, a vari-
able. Since the expression is a series in x−π/2, it can only be integrated with respect to x ,
and the type system ensures this. In fact the domains of these results are, respectively,
Expression Integer, which is the workhorse for much of calculus, Union(Expression

Integer,List Expression Integer) and
UnivariatePuiseuxSeries(Expression Integer,x,%pi/2) for the last two. These last
two require some explanation, which is given in the section 1.4 “Some AXIOM facilities” on
page 8.

Axiom naturally manipulates various types of composite data structures: lists, vectors, sets
and so on.

Convention 4 (a convention of the library, rather than of the kernel). Parentheses
– () – are used for grouping and function application, brackets – [] – are used for constructing
lists, and braces – {} – are used for constructing sets.

The difference between lists and sets is that lists can contain repetitions, and order matters,
whereas sets, as in mathematics, are unordered and without repetition.

->[2,1,2,1]

(1) [2,1,2,1]

Type: List PositiveInteger

->{2,1,2,1}

(2) {1,2}

Type: Set PositiveInteger

Suppose we had a list of objects, and wished to convert it into a set, e.g., in the situation
above, we do not want to retype the 2,1,2,1. This is handled by a very general mechanism
in Axiom.

Convention 5. The :: in x operator, used as in

Axiomobject :: Axiomdomain

can be used to convert the object to lie in the specified domain.

The :: operator is partially built into the Axiom kernel. When new data types are defined,
the definition includes some coerce functions between the new type and some existing types.
However, the :: operator is more than just one of these programmed conversions: it is at
least what an algebraist would call the transitive closure of these operations, so that if there
are coerce functions from A to B , and from B to C , then :: can convert from A to C . In
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fact, it is more than this: if a functor, such as List possesses a map operation of signature

(A → B,ListA) → ListB

and it is possible to coerce objects from A to B , then the system will be able to coerce
objects from List A to List B. More details are given in Sutor & Jenks [Jenk92].

Principle 4. The interpreter is responsible for performing any chain of coercions necessary
to understand the user’s intentions, or when required to do so by an explicit use of :: . The
compiler will perform a chain of coercions when instructed to do so by the :: operator in
compiled code.

So we could replace command (2) above by

->%::Set PositiveInteger

(2) {1,2}

Type: Set PositiveInteger

A large number of coercions are performed automatically. Even the simple computation
x+ 1 causes three coercions:

(1) the variable x from the domain Variable to the domain Polynomial Integer;

(2) the number 1 from the domain PositiveInteger to the domain Polynomial Integer,
passing via Integer;

(3) the result x + 1 from the domain Polynomial Integer to the domain OutputForm,
using sub-coercions of x and 1 to OutputForm.

All printing actually takes place from the domain OutputForm, which is also the starting
point for conversions to TeX format, Fortran etc. This means that a new domain which can
be printed at all (i.e. which can be coerced to OutputForm) can be printed in TeX, Fortran
and indeed in any other ways that get added later, without having to modify the domain at
all.

1.4 Some AXIOM facilities

Computer algebra is often also called “symbolic manipulation”, and Axiom excels at manip-
ulating symbols as such. A symbol can be as simple as x or as complex as

Omega (theta)

(1) x (a,b )

7 1,2 1

obtained via the following command:

script(x,[[1,2],[paren theta],[Omega],[7], [a,script(b, [[1]])]])

This symobl can be converted into TEX format by means of the outputAsTex function: the
result is shown below.

Omega
7 x

(theta)
1, 2 (a, b1)

It is still a single symbol, and the command

->integrate(sin %,%)

Omega (theta)
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(4) - cos( x (a,b ))

7 1,2 1

Type: Union(Expression(Integer),...)

is no different from integrate(sin(x),x).

Axiom has a rich integrator, based on the developments by Bronstein[Bron90a]. As we saw
earlier, and just above, it seems to give a rather complicated domain* for the result: why not
just Expression Integer? This expression certainly looks like an expression with integer
entries, and seems to behave as one. First, we need to explain what Union is.

Principle 5. Any set of Axiom domains D1, . . . , Dn can be combined into a (disjoint) union
domain, denoted Union(D1, . . . , Dn). The Di are called the branches of the union. The
operations available on this union domain are:

• equality – two elements are equal if they come from the same branch and are equal in
that branch;

• coercion to OutputForm;

• coercion from each Di to the union domain;

• coercion to each Di from the union domain, which may fail if the union object is not
in the correct branch;

• an in x predicate case , for testing if the union object actually is in a particular branch
or not.

These union domains correspond to what some other languages call “sum types”. A particu-
larly useful case is exemplified by the “exact quotient” operation on Integer: its return type
is Union(Integer,"failed"), where the special token failed is returned if the division is
not exact.

So we are saying that Axiom’s integrator can return either an expression, or a list of expres-
sions. A simple example of it doing the latter is the following.

-> integrate(1/(x**2-a),x)

2 +-+

(x + a)\|a - 2a x +---+

log(-------------------) x\|- a

2 atan(-------)

x - a a

(4) [------------------------,- -------------]

+-+ +---+

2\|a \|- a

Here, there are two possible answers, depending on the sign of a. Since Axiom has no way
of knowing which is required, it returns both, and leaves it to the user, or the caller of the
integrate command, to supply the higher knowledge necessary to determine which element
of the list to use (and it may not always be the same one). In some sense, they are equally
correct, as we can check by differentiating them.

-> [differentiate(f,x) for f in %]

1 1

(5) [------,------]

2 2

x - a x - a
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Note the neat way of handling the list. There are many other such list handling techniques,
and the user can also use map, a function provided on most of the library’s compound data
types. This is how map could differentiate the elements of that list.

-> map(f+->differentiate(f,x),%% 4)

1 1

(6) [------,------]

2 2

x - a x - a

Convention 6 (Of the library authors). The notation

list of variables+− > expression

defines an anonymous function of those variables. It corresponds to the lambda-calculus
expression “λvariables.expression”.

As we have already seen, Axiom has a powerful series capability. As pioneered by Norman[Norm75]
in Scratchpad-1, these series are lazy: terms are only evaluated as required for printing, and
more terms can always be evaluated as required.

-> series(sin(x),x=0)

1 3 1 5 1 7 1 9 1 11 12

(1) x - - x + --- x - ---- x + ------ x - -------- x + O(x )

6 120 5040 362880 39916800

(2) -> %/x

1 1 3 1 5 1 7 1 9 1 11 12

(2) - x - -- x + ---- x - ----- x + ------- x - --------- x + O(x )

x 6x 120x 5040x 362880x 39916800x

(3) -> %-1

1 1 3 1 5 1 7 1 9 11

(3) - 1 + - x - -- x + ---- x - ----- x + ------- x + O(x )

x 6x 120x 5040x 362880x

The number of terms initally calculated (and therefore displayed) is controlled by the system
command )set streams calculate. The type of this result is
UnivariatePuiseuxSeries(Expression Integer,x,0).
The last two parameters are clearly the variable and the point about which we are expanding,
but what on earth is a Puiseux series? Why cannot Axiom give us the familiar Taylor
series, which this certainly looks like being? A Taylor series represents a continuous function
a0x

0+a1x
1+ · · · . One way of generalising this is to allow meromorphic functions, i.e. those

with a point singularity of the 1/x (more generally 1/xn) variety. In order to represent these,
we have to allow (a finite number of) negative exponents in the series – so-called Laurent
series.

-> series(1/sin(x),x=0)

- 1 1 7 3 31 5 127 7 73 9 10

(4) x + - x + --- x + ----- x + ------ x + ------- x + O(x )

6 360 15120 604800 3421440
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However, even these are not as general as one would like, since they are incapable of repre-
senting multi-valued functions like

√
x. To do this, we have to allow fractional exponents (of

bounded denominator), which gives us Puiseux series.

-> sqrt %

1 3 7

- - - -

2 1 2 1 2 5

(5) x + -- x + --- x + O(x )

12 160

-> %**2

9

-

- 1 1 7 3 2

(6) x + - x + --- x + O(x )

6 360

(7) -> %%(4)-%

19

--

2

(7) O(x )

Note that Axiom, like any other algebra system, cannot prove that the difference of these
two series is identically zero, merely that in going all the way up to the limit required by
)set streams calculate, it can find no non-zero terms. Puiseux series have many uses in
algebraic geometry. See Davenport[Dave81]

1.4.1 How does one keep track of all this?

There seem to be so many different names and domains around in the Axiom system. How
does one keep track of them all, and know what to use? There is an on-line help system
Hyperdoc, with tutorial material and information arranged by subject, but the system itself
provides some help.

Convention 7. The names of Axiom functions are either special symbols (such as +) or
complete english words strung together. In this case, every word after the first is capitalised.
Thus integrate but complexIntegrate. In addition:

• all boolean predicates end in a ? , as in odd?, which tests if a number is odd

• all destructive functions which operate on data structures end in a ! , as in reverse!,
which reverses a list destructively.

Conversely, the names of domains (and other constructors we will come to later) con-
sist of english words strung together, all of which are capitalised, as in IntegerMod or
UnivariatePuiseuxSeries.

One can search (case-insensitively) for all functions whose name contains a particular word
by using the system command )what operations, contractible to )w o , as in

->)what operations series
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Operations whose names satisfy the above pattern(s):

series seriesSolve

To get more information about an operation, say series , issue the

command )display op series

As it says, the command )display operations, contractible to )d o, can be used to find
out what the arguments of an operation should be. However, in order to explain this, we
have to delve rather deeper into Axiom’s type system. The user of the Nag Fortran library
sees nothing strange in writing one subroutine to multiply real matrices, and a different
one to multiply complex matrices. Indeed, one would be hard put to do anything else in
Fortran 77. The user of the Nag Ada library, in contrast, would expect to find a generic
matrix multiplication routine, which could be called for any built-in real or complex type,
and possibly for additional user-defined types. Axiom’s type system is much closer to the
Ada one than the Fortran one, but in fact even more general than the Ada model.

Just as one can make various different modular domains by applying the functor1 IntegerMod
to different integers, so one can make different matrix domains by applying the functor
Matrix to different domains for the coefficients.

-> [[1,2],[3,4]]::Matrix IntegerMod 3

+1 2+

(1) | |

+0 1+

Type: Matrix(IntegerMod(3))

-> [[1,2],[3,4]]::Matrix IntegerMod 5

+1 2+

(2) | |

+3 4+

Type: Matrix(IntegerMod(5))

(3) -> [[1,2],[3,4]]::Matrix Float

+1.0 2.0+

(3) | |

+3.0 4.0+

Type: Matrix(Float)

In each case, the coefficient arithmetic is done according to the correct rules of the coefficient
domain.

(4) -> %%(1)**2

+1 1+

(4) | |

+0 1+

Type: Matrix(IntegerMod(3))

(5) -> %%(2)**2

+2 0+

1 Axiom terminology, borrowed from category theory, uses the word “functor” for those functions that yield
domains as their result, whereas “function” is reserved for operations whose value is an Axiom object
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(5) | |

+0 2+

Type: Matrix(IntegerMod(5))

(6) -> %%(3)**2

+7.0 10.0+

(6) | |

+15.0 22.0+

Type: Matrix(Float)

But would it make sense, say, to have a matrix of hash tables? Clearly not: we require that
the coefficients of the matrix be capable of being added, subtracted, multiplied etc. In fact,
we have to place some requirements on the domain which is the parameter to Matrix, just
as we placed some requirements on the argument to IntegerMod. The )show command tells
us what these requirements are (and a great deal more).

->)show IntegerMod

IntegerMod p: PositiveInteger is a domain constructor

Abbreviation for IntegerMod is ZMOD

->)show Matrix

Matrix R: Ring is a domain constructor

Abbreviation for Matrix is MATRIX

We have stipulated that the Axiom object p which is the parameter to IntegerMod must
belong to the (sub-)domain PositiveInteger, and similarly we stipulate that the domain
R which is the parameter to Matrix must belong to the second-order type system Ring.

1.5 Categories

Principle 6. The Axiom library declares a family of second-order types, known as cate-
gories. The categories are arranged in a directed acyclic graph, and each domain belong to
a specific category, and to all the ancestors of that category. The specification of a category
includes

• all its direct ancestors,

• any additional operations that this category supports, and

• any additional axioms that the operations must satisfy.

The operation Join is used to construct new categories.

This may appear a bit abstract, so let’s look at an example from the foundations of the
Axiom library. The fundamental category in Axiom is SetCategory.

Convention 8. Whenever a category, or domain, is being discussed in Axiom, the symbol
% stands for the domain in question, or for any domain from the category in question.

With the help of that notation, we can ask Axiom what the definition of SetCategory is.

->)show SetCategory

SetCategory is a category constructor.

Abbreviation for SetCategory is SETCAT

This constructor is exposed in this frame.

Issue )edit bookvol10.2.pamphlet to see algebra source code for SETCAT
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------------------------------- Operations --------------------------------

?=? : (%,%) -> Boolean coerce : % -> OutputForm

This output shows that there are two operations defined on any domain, denoted by % , which
belongs to the category SetCategory: an infix operation = which takes two arguments from
% and yields a Boolean result, and an operation called coerce, which takes an element of
%, and yields an OutputForm. How does this grow into more useful categories? A graphic
representaton of some of the first few extensions is given below.

SetCategory
↓ ↘

AbelianSemiGroup OrderedSet
↓ ↘ ↓

AbelianMonoid OrderedAbelianMonoid
↓ ↘ ↓

CancellationAbelianMonoid OrderedAbelianMonoid
↓ ↘ ↓

AbelianGroup OrderedCancellationAbelianMonoid
↘ ↓

OrderedAbelianGroup

where the arrows indicate a “direct descendant” relationship.

AbelianSemiGroup is defined to have one new operator:

+ : %×% 7→ %

satisfying the associative and commutative axioms:

a+ (b+ c) = (a+ b) + c

a+ b = b+ a

AbelianMonoid introduces a new nullary operator2

0 : 7→ %

satisfying the obvious axiom
0 + a = a

CancellationAbelianMonoid is the category of abelian monoids with the cancallation ax-
iom:

a+ b = a+ c ⇒ b = c

Constructively, this is represented by a partial subtraction operator, whose signature is
defined as:

− : %×% 7→ Union(%, ”failed”)

While such an operation could be defined for any AbelianMonoid, or even any AbelianSemiGroup,
it is the cancellation axiom that ensures that − has a unique value. This operator is sub-
sumed in the − operation defined on AbelianGroups.

2 Technically speaking, it is a constant, rather than a nullary operator, which means that the value is
computed once and for all when the type is created. The difference is essentially one of efficiency, and we
will not discuss it further here.
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AbelianGroup adds one further unary operator 3

− : % 7→ %

This operator satisfies the axiom
a+ (−a) = 0

The first ↘ introduces an operator

<: %×% 7→ Boolean

satisfying the usual axioms:
a < b ∨ b < c ⇒ a < c

¬(a < b) ∨ ¬(b < a) ⇒ a = b

a < b ⇒ ¬(b < a)

Subsequent↘ in this diagram introduce no new operators, but one more axiom is introduced,
when OrderedAbelianSemiGroup is defined:

a < b ⇒ a+ c < b+ c

This is typical of what happens when two categories are merged to form a new named
category: we keep the same operators, but are interested in the interaction between them,
which requires the introduction of new axioms to define this interaction. Subsequent ↘ in
the chain represent the straight forward merging of ancestors.

It should be noted that none of these definitions are hard-coded in the the Axiom kernel:
merely the mechanism for understanding them is part of the kernel. The definitions are
written in the Axiom category definition language, and could be modified or extended to
suit different kinds of mathematics. See Lambe[Lamb89], Schwarz[Schw88] The code reads,
in essence, as given below.

Convention 9. Axiom comments can be introduced by −− or ++. Those beginning ++
are intended for the user, and can be retrieved by the on-line help system.

For example, the comment following zero? in AbelianMonoid is retrieved when the opera-
tion name zero? is searched for.

SetCategory(): Category == Join(Object, CoercibleTo OutputForm) with

"=": (%,%) -> Boolean

3 In practice, it also adds a binary operator

− : %×% 7→ %

satisfying the axiom
a− b = a+ (−b)

From a logical point of view, the binary operator is redundant. It is present in Axiom for two reasons.
The first is legibility of programs: a − b is easier to read than a + (−b). The second is efficiency: while
the binary operator can always be implemented in terms of the unary operator, and indeed has a default
definition implementing it this way, it is not necessarily very efficient to do so. For example, if % is a
matrix type, implementing the binary operator in terms of the unary operator causes two new matrices
to be allocated instead of one.
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++ Axioms:

++ associative("+":(%,%)->%) || \space{ (x+y)+z = x+(y+z) }

++ commutative("+":(%,%)->%) || \spad{ x+y = y+x }

AbelianSemiGroup(): Category == SetCategory with

"+": (%,%) -> %

++ Axioms:

++ leftIdentity("+":(%,%)->%,0) || \spad{ 0+x=x }

++ rightIdentity("+":(%,%)->%,0) || \spad{ x+x=x }

AbelianMonoid(): Category == AbelianSemiGroup with

0: constant -> % ++ 0 is the additive identity element

zero?: % -> Boolean ++zero?(x) tests if x is equal to 0

add

zero? x == x = 0

The clause after add introduces a default definition of zero? in terms of = and 0.

Principle 7. Categories can introduce default definitions of operations, which will take
effect in any domain belonging to that category unless overridden by a definition in that
domain, or in a more specific category.

Further details of the general mechanism are given in Jenks et al. [Jenk92], and the actual
categories implemented in the Axiom library are described in Davenport & Trager[Dave90]
and Davenport et al.[Dave91]. However, we can see that it is possible to define such a system
of categories which will act, in effect, as a type system for the domains themselves.

Principle 8. The functors of Axiom are strongly typed: each parameter which is an Axiom
object is specified to come from a particular domain; each parameter which is an Axiom
domain is specified to belong to a particular Axiom category. Similarly, the domain returned
by a particular functor is specified to belong to a particular category. All construction of
domains must satisfy these constraints on the functors.

To take the example of Matrix, the definition of the functor could begin as follows:

Matrix(R:Ring): MatrixCategory(R, Vector R, Vector R) ==

where MatrixCategory is a category, itself with three parameters, which defines the various
operations that must be satisfied by all kinds of matrices, not just those defined by Matrix,
which defines dense matrices stored in a two-dimensional array with no special properties.
We can discover what Axiom’s current definition of the operations on a ring are.

-> )show Ring

Ring is a category constructor

Abbreviation for Ring is RING

This constructor is exposed in this frame.

Issue )edit bookvol10.2.pamphlet to see algebra source code for RING

------------------------------- Operations --------------------------------

?*? : (%,%) -> % ?*? : (Integer,%) -> %

?*? : (NonNegativeInteger,%) -> % ?*? : (PositiveInteger,%) -> %

?**? : (%,NonNegativeInteger) -> % ?**? : (%,PositiveInteger) -> %

?+? : (%,%) -> % ?-? : (%,%) -> %

-? : % -> % ?=? : (%,%) -> Boolean
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1 : () -> % 0 : () -> %

?^? : (%,NonNegativeInteger) -> % ?^? : (%,PositiveInteger) -> %

coerce : Integer -> % coerce : % -> OutputForm

hash : % -> SingleInteger latex : % -> String

one? : % -> Boolean recip : % -> Union(%,"failed")

sample : () -> % zero? : % -> Boolean

?~=? : (%,%) -> Boolean

characteristic : () -> NonNegativeInteger

subtractIfCan : (%,%) -> Union(%,"failed")

In particular we have the operations of addition, subtraction and multiplication that are
required to make sense of the definition of matrix with entries from R. In fact the actual
definition of Matrix is more complicated, and the category of the result is defined to be

Matrix(R:Ring): MatrixCategory(R,Row,Col) with

diagonalMatrix : Vector R -> %

++ \spad{diagonalMatrix(v)} returns a diagonal matrix where the elements

++ of v appear on the diagonal.

if R has Field then

inverse : % -> Union(%,"failed")

Note the conditional definition: the coefficients R need only be a Ring, but if, in addition,
they are a Field, i.e. division is possible, then it makes sense to talk about the inverse
of a matrix. Of course, the inverse operation may fail if the matrix is singular, so the
return domain of inverse is defined to be Union(%,”failed”). MatrixCategory is not itself
a descendant of Ring, because matrices can only be added, multiplied etc. if they conform.
However, square matrices do form a ring, and Axiom knows this.

Convention 10. The infix binary predicate has can be used to test if domains belong to
categories, or if they have specified attributes.

-> SquareMatrix(2,Integer) has Ring

(7) true

Type: Boolean

This implies that a square matrix domain would itself be an acceptble parameter to matrix.

-> [[ [[1,2],[3,4]],1,0],[0,[[5,6],[7,8]],1]]::Matrix SquareMatrix(2,Integer)

++1 2+ +1 0+ +0 0++

|| | | | | ||

|+3 4+ +0 1+ +0 0+|

(8) | |

|+0 0+ +5 6+ +1 0+|

|| | | | | ||

++0 0+ +7 8+ +0 1++

Type: Matrix(SquareMatrix(2,Integer))

-> transpose %

++1 2+ +0 0++

|| | | ||

|+3 4+ +0 0+|
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| |

|+1 0+ +5 6+|

(9) || | | ||

|+0 1+ +7 8+|

| |

|+0 0+ +1 0+|

|| | | ||

++0 0+ +0 1++

Type: Matrix(SquareMatrix(2,Integer))

-> %%(8)*%

++8 10+ +5 6+ +

|| | | | |

|+15 23+ +7 8+ |

(10) | |

| +5 6+ +68 78 +|

| | | | ||

+ +7 8+ +91 107++

Type: Matrix(SquareMatrix(2,Integer))

-> square? %

(11) true

Type: Boolean

This is not necessarily the most stunning application of Axiom, but it does show that the
type system can be used to construct some truly amazing objects. We notice also that the
type system interpreted some occurrences of 1 and 0 as requiring appropriate matrices as
their values, in order to make the command type-consistent.

In practice these extremely complex types are often used in the middle of a calculation,
even when the final result is quite simple or straight-forward. Grabmeier[Grab91a] gives an
example from genetics, where one of the intermediate objects in his construction belonged
to the domain

List PolynomialIdeals(Fraction Integer,

DirectProduct(4,NonNegativeInteger),

[x1,x2,x3,x4],

DistributedMultivariatePolynomial([x1,x2,x3,x4],

Fraction Integer))

Convention 11. Every Axiom constructor, i.e. functor or category, has an abbreviation,
consisting of at most eight upper-case letters (seven in the case of categories). These serve
two purposes: they can be used on input and output in order to make the names of the types
shorter, and they denote the directory in which the corresponding Axiom library lives. The
defaults for category Cat, with abbreviation CAT, are called Cat& , with abbreviation CAT-.

For example, the abbreviation for Integer is INT, and the compiled library lives in the
directory INT.nrlib. Grabmeier’s type can therefore also be written as

List IDEAL(FRAC INT,DIRPROD(4,NNI),[x1,x2,x3,x4],DMP([x1,x2,x3,x4],FRAC INT)

which is certainly shorter, even though still somewhat of a mouthful.
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1.5.1 Using the )display command

Let us begin with a very simple example of the )display command.

-> )d op pop!

There are 4 exposed functions called pop! :

[1] ArrayStack(D1) -> D1 from ArrayStack(D1) if D1 has SETCAT

[2] Dequeue(D1) -> D1 from Dequeue(D1) if D1 has SETCAT

[3] D -> D1 from D if D has SKAGG(D1) and D1 has TYPE

[4] Stack(D1) -> D1 from Stack(D1) if D1 has SETCAT

Examples of pop! from ArrayStack

a:ArrayStack INT:= arrayStack [1,2,3,4,5]

pop! a

a

Examples of pop! from Dequeue

a:Dequeue INT:= dequeue [1,2,3,4,5]

pop! a

a

Examples of pop! from StackAggregate

a:Stack INT:= stack [1,2,3,4,5]

pop! a

a

Examples of pop! from Stack

a:Stack INT:= stack [1,2,3,4,5]

pop! a

a

There are 4 exposed functions listed, with their argument types, result type and (following
the word from) the source of their implementation: a combination known collectively as a
signature. Once one knows that SKAGG is an abbreviation for StackAggregate, which is
easy enough to find out

->)d abbrev SKAGG

SKAGG abbreviates category StackAggregate

Axiom functions have a special syntax (a tagged comment) that provides examples of
functions from the algebra source code. For example, the Stack domain has the pop!

function.

pop_! : % -> S

++ pop! returns the top element of the stack, destructively

++ modifying the stack to remove that element.

++

++X a:Stack INT:= stack [1,2,3,4,5]

++X pop! a

++X a

The special form of the ++ comment, which is ++X provides an example of the use of the
function. So, in the above output, we see

Examples of pop! from Stack
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a:Stack INT:= stack [1,2,3,4,5]

pop! a

a

which shows three commands a user can execute to demonstrate the function

-> a:Stack INT:= stack [1,2,3,4,5]

(1) [1,2,3,4,5]

Type: Stack(Integer)

(2) -> pop! a

(2) 1

Type: PositiveInteger

(3) -> a

(3) [2,3,4,5]

Type: Stack(Integer)

making it clear that the stack a has been modified.

A more complicated example would be given by )d op integrate, and we will only explain
some of the entries. The Axiom library has 32 exposed integrations and 10 unexposed ones.

[29] D -> D from D

if D has UPXSCAT(D1) and D1 has RING and D1 has ALGEBRA(

FRAC(INT))

[7] (D2,Symbol) -> Union(D2,List(D2)) from FunctionSpaceIntegration(

D4,D2)

if D4 has Join(EuclideanDomain,OrderedSet,

CharacteristicZero,RetractableTo(Integer),

LinearlyExplicitRingOver(Integer)) and D2 has Join(

TranscendentalFunctionCategory,PrimitiveFunctionCategory,

AlgebraicallyClosedFunctionSpace(D4))

The function [29] is the one we used to integrate the Puiseux series: UPXSCAT is the abbrevi-
ation for UnivariatePuiseuxSeriesCategory, and D1, the coefficients of the series, must
be an algebra over the rational numbers (otherwise we could not regard the exponents as
coefficients, which one has to do when integrating xp/q to q

p+qx
1+p/q) and a ring.

The function [7] is the one we used for most of the other integrations we have performed so
far. Although the signature looks fairly lengthy, we have already analysed the fact that the
signature is of the form

(D2, Symbol) → Union(D2, ListD2)

The rest of the lines are merely explaining what properties D2 must have. D4 plays the role
of the coefficients in the function being integrated. We always had Integer in there, but
this is not strictly necessary.

-> 2*cos(4*x)**3::Expression RomanNumeral

3

(1) II cos(IV x)

Type: Expression(RomanNumeral)

(2) -> integrate(%,x)
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2

(cos(IV x) + II)sin(IV x)

(2) --------------------------

VI

Type: Union(Expression(RomanNumeral),List(Expression(RomanNumeral)))

It can clearly be seen that, in Expression RomanNumeral, the coefficients are indeed mem-
bers of RomanNumeral, but the exponents are not.
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Chapter 2

How does one program in the
Axiom system by James H.
Davenport

This is (mostly) quoted verbatim, with permission, from Davenport[Dave92b].

2.1 Introduction

Axiom can be used in essentially three ways. The first corresponds to the “pocket calculator”
style of use – simple commands can be typed and the answer is printed. These commands
can be issued from the keyboard in traditional style, or via the Hyperdoc menu system, or
through “.input” files, and are handled by what is generally called the “Axiom interpreter”.
This interpreter does more than traditional computer algebra systems do, since Axiom is a
typed system, and the interpreter has to do type inference.

The second style corresponds to what might be called the “programmable pocket calculator”
style, where simple functions are defined, or variables given values for later use. An example
of a simple function would be

fac n == if n < 3 then n else n*fac(n-1)

as a definition of the factorial function. A slightly more complicated example (take from
IBM[IBMx91] and Jenks & Sutor[Jenk92]) goes as follows.

mersenne i == 2**i - 1

This line defines a function for computing the i-th Mersenne number

mersenneIndex := [n for n in 1.. | prime?(mersenne(n))]

This line, which produces the following output from Axiom,

\begin{verbatim}

(2) [2,3,5,7,13,17,19,31,61,89,...]

Type: Stream(PositiveInteger)

computes an infinite (but lazily evaluated) list of the indices of those Mersenne numbers
which are actually prime.

23
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mersennePrime n == mersenne mersenneIndex(n)

This defines a function which produces the n-th Mersenne prime. It can be used as in the
following input line (and corresponding output).

mersennePrime 5

(4) 8191

Type: PositiveInteger

In this style, we have various “one-liners” which interact with each other, much as pro-
grammed functions on a pocket calculator.

In the third style, we define new complete data types to Axiom. It is this third style of
programming that this paper addresses.

2.2 Programming concepts

Axiom has several fundamental concepts, which we have to outline briefly.

Domain A domain is what many other languages would call an abstract data
type, i.e. a specification of certain data objects and the operations on
them. A typical domain would be Integer, whose elements are the un-
derlying integers of the implementation (infinite precision, of course),
and which supports the following operations, as given by the Axiom
command )show Integer, or by using the Hyperdoc browser. We re-
mind the reader that % is Axiom’s notation for the “current domain”,
i.e. Integer in this case, and that all operations are prefix unless shown
otherwise (e.g. the infix * and quo).

Integer is a domain constructor

Abbreviation for Integer is INT

This constructor is exposed in this frame.

Issue )edit bookvol10.3.pamphlet to see algebra source code for INT

------------------------------- Operations --------------------------------

?*? : (%,%) -> % ?*? : (Integer,%) -> %

?*? : (NonNegativeInteger,%) -> % ?*? : (PositiveInteger,%) -> %

?**? : (%,NonNegativeInteger) -> % ?**? : (%,PositiveInteger) -> %

?+? : (%,%) -> % ?-? : (%,%) -> %

-? : % -> % ?<? : (%,%) -> Boolean

?<=? : (%,%) -> Boolean ?=? : (%,%) -> Boolean

?>? : (%,%) -> Boolean ?>=? : (%,%) -> Boolean

D : % -> % D : (%,NonNegativeInteger) -> %

OMwrite : (%,Boolean) -> String OMwrite : % -> String

1 : () -> % 0 : () -> %

?^? : (%,NonNegativeInteger) -> % ?^? : (%,PositiveInteger) -> %

abs : % -> % addmod : (%,%,%) -> %

associates? : (%,%) -> Boolean base : () -> %

binomial : (%,%) -> % bit? : (%,%) -> Boolean

coerce : Integer -> % coerce : % -> %

coerce : Integer -> % coerce : % -> OutputForm

convert : % -> String convert : % -> DoubleFloat

convert : % -> Float convert : % -> Pattern(Integer)

convert : % -> InputForm convert : % -> Integer
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copy : % -> % dec : % -> %

differentiate : % -> % even? : % -> Boolean

factor : % -> Factored(%) factorial : % -> %

gcd : List(%) -> % gcd : (%,%) -> %

hash : % -> % hash : % -> SingleInteger

inc : % -> % init : () -> %

invmod : (%,%) -> % latex : % -> String

lcm : List(%) -> % lcm : (%,%) -> %

length : % -> % mask : % -> %

max : (%,%) -> % min : (%,%) -> %

mulmod : (%,%,%) -> % negative? : % -> Boolean

nextItem : % -> Union(%,"failed") odd? : % -> Boolean

one? : % -> Boolean permutation : (%,%) -> %

positive? : % -> Boolean positiveRemainder : (%,%) -> %

powmod : (%,%,%) -> % prime? : % -> Boolean

?quo? : (%,%) -> % random : % -> %

random : () -> % rational : % -> Fraction(Integer)

rational? : % -> Boolean recip : % -> Union(%,"failed")

?rem? : (%,%) -> % retract : % -> Integer

sample : () -> % shift : (%,%) -> %

sign : % -> Integer sizeLess? : (%,%) -> Boolean

squareFree : % -> Factored(%) squareFreePart : % -> %

submod : (%,%,%) -> % symmetricRemainder : (%,%) -> %

unit? : % -> Boolean unitCanonical : % -> %

zero? : % -> Boolean ?~=? : (%,%) -> Boolean

OMwrite : (OpenMathDevice,%,Boolean) -> Void

OMwrite : (OpenMathDevice,%) -> Void

characteristic : () -> NonNegativeInteger

differentiate : (%,NonNegativeInteger) -> %

divide : (%,%) -> Record(quotient: %,remainder: %)

euclideanSize : % -> NonNegativeInteger

expressIdealMember : (List(%),%) -> Union(List(%),"failed")

exquo : (%,%) -> Union(%,"failed")

extendedEuclidean : (%,%) -> Record(coef1: %,coef2: %,generator: %)

extendedEuclidean : (%,%,%) -> Union(Record(coef1: %,coef2: %),"failed")

gcdPolynomial : (SparseUnivariatePolynomial(%),SparseUnivariatePolynomial(%))

-> SparseUnivariatePolynomial(%)

lcmCoef : (%,%) -> Record(llcmres: %,coeff1: %,coeff2: %)

multiEuclidean : (List(%),%) -> Union(List(%),"failed")

patternMatch : (%,Pattern(Integer),PatternMatchResult(Integer,%))

-> PatternMatchResult(Integer,%)

principalIdeal : List(%) -> Record(coef: List(%),generator: %)

rationalIfCan : % -> Union(Fraction(Integer),"failed")

reducedSystem : Matrix(%) -> Matrix(Integer)

reducedSystem : (Matrix(%),Vector(%))

-> Record(mat: Matrix(Integer),vec: Vector(Integer))

retractIfCan : % -> Union(Integer,"failed")

subtractIfCan : (%,%) -> Union(%,"failed")

unitNormal : % -> Record(unit: %,canonical: %,associate: %)

It must be stressed that the use of )show or the browser is essential to
understanding what is already present in Axiom, and what one has to
add to produce a valid domain. If fact, a user cannot write a domain,
merely a function (see later) which, when called, will create a domain.
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Category The set of all domains (declared as) belonging to this category, i.e. hav-
ing the stated operations and associated axioms. For example, the do-
main Integer belongs to the category Ring, which has the following
operations, again given by )show Ring or the browser.

Ring is a category constructor

Abbreviation for Ring is RING

This constructor is exposed in this frame.

Issue )edit bookvol10.2.pamphlet to see algebra source code for RING

------------------------------- Operations --------------------------------

?*? : (%,%) -> % ?*? : (Integer,%) -> %

?*? : (NonNegativeInteger,%) -> % ?*? : (PositiveInteger,%) -> %

?**? : (%,NonNegativeInteger) -> % ?**? : (%,PositiveInteger) -> %

?+? : (%,%) -> % ?-? : (%,%) -> %

-? : % -> % ?=? : (%,%) -> Boolean

1 : () -> % 0 : () -> %

?^? : (%,NonNegativeInteger) -> % ?^? : (%,PositiveInteger) -> %

coerce : Integer -> % coerce : % -> OutputForm

hash : % -> SingleInteger latex : % -> String

one? : % -> Boolean recip : % -> Union(%,"failed")

sample : () -> % zero? : % -> Boolean

?~=? : (%,%) -> Boolean

characteristic : () -> NonNegativeInteger

subtractIfCan : (%,%) -> Union(%,"failed")

Note that 0 and 1 are nullary operations, since their actual value may
well be very different in different domains belonging to the category
Ring, e.g. in the ring of n-by-n square matrices, the 1 is the identity
matrix, and not the matrix consisting entirely of 1.
Categories can be parameterized, as in Algebra(R), where R is some
CommutativeRing, which gives the category of all algebras over R.

Functor A function which takes arguments which are either individual objects,
in which case the domain they come from is specified, or domains,
in which case the category they come from is specified, and which
returns a domain specified to live in a particular category. for Example:
Z=Integer is the result of applying the function Integer to no argu-

ments;
Q is the result of applying the function Fraction (which

requires an IntegralDomain as its argument) to the
IntegralDomain Integer. The result is a Field.

Z[y] is the result of applying the functor
UnivariatePolynomial to the object y (from the domain
Symbol) and the domain Integer (from the category Ring).
The result is declared to be a Ring, or, more precisely, to be-
long to the category UnivariatePolynomialCategory(R),
where R is the Ring supplied.
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Package Very like a function, but does not specify a new data ob-
ject, merely some new functions. A typical example would be
UnivariatePolynomialFunctions2, which defines the operation
map:(R -> S, UnivariatePolynomial(x,R)) -> UnivariatePolynomial(y,S)

where x and y are elements of Symbol, and R and S belong to the
category Ring. In mathematical terms, this function takes a function
θ from R to S, and performs the corresponding function from R[x] to
S[y]. To get the actual function from R[x] to S[y], one would have
to use Axiom’s notation for “lambda expressions”, viz. map(f,#1), i.e.
that function which, given an element p of UnivariatePolynomial(x,R)
computes map(f,p).

Constructor The generic term including category, functor, and package.

2.3 A first problem – Weighted Polynomials

2.3.1 The problem definition

Our aim iere is to emulate CAMAL’s (Fitch[Fitc74]) handling of “weighted polynomials”,
a concept which is also found in Reduce (Hearn[Hear87]) via the commands weight and
wtlevel. For those not familiar with the idea, we give a quick summary here. We will
then develop two alternative implementations incrementally. The complete definitions will
be given in appendices.

Some of the polynomial variables have a (positive integer) weight associated to them. If
x has weight k, the xn has weight kn, and the weight of a monomial is the sum of the
weights of the powers in it. This means that the weight of a product of two monomials is
the sum of the weights. A certain integer (the weight level) is chosen, and all monomials
of weight exceeding this are dropped. If we call this dropping operation ⌊⌋ (by analogy with
the rounding of integers), we see that ⌊f + g⌋ = ⌊f⌋+ ⌊g⌋, and that ⌊fg⌋ = ⌊⌊f⌋⌊g⌋⌋.
The outline implementation we suggest is conceptually similar to that of Reduce (Hearn[Hear87]).
The weight is stored as the exponent of a virtual variable (k* in Reduce), and monomials
are stored as coefficients of the appropriate power of this variable. Reduce does not ensure
that k* has to be the most significant variable, in terms of polynomial ordering, and hence
the truncation is not as efficient as it might be.

The key Axiom functions that we need to use are briefly explained now.

• Polynomial is the type Axiom assigns by default to polynomial-like objects. These
types can be seen in Axiom after every object is computed (use the Axiom system
command )set message type on if they are not being shown). This is a functor,
which, given a Ring R, returns a domain in
PolynomialCategory(R,Symbol,IndexedExponents(Symbol)), i.e. the variables are
the elements of the Symbol domain, which corresponds to ordinary symbols, and the
exponents are from IndexedExponents, which gives a non-negative integer for every
symbol (for which it is non-zero). Hence this type is a traditional sparse multivariate
polynomial, and is Axiom’s default type. There are others, in particular dense poly-
nomials and polynomials represented in a distributed, rather than recursive, fashion,
but these do not appear unless explicitly called for.

• PolynomialCategory is the category of the result of Polynomial, as is show by the
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browser (the Parents option on Polynomial). This category takes as arguments a
Ring R, an OrderedSet, known typically as VarSet, which represents the “variables”
of the polynomial structure, and an OrderedAbelianMonoidSup1, known as E, which
represents the exponents of the polynomial structure. So a domain in the category
PolynomialCategory(R,E,VarSet) is a representation of polynomials with variables
VarSet and coefficients from R, using E as the representation of the exponents.

• PolynomialRing is used in the implementation of Polynomial (via
SparseMultivariatePolynomial, as can be found by the Lineage option of the browser).
This functor takes as arguments a Ring R, the ring of coefficients, and an
OrderedAbelianMonoid E, the set of exponents, and produces formal polynomials. In
particular, if E is N (the domain NonNegativeInteger in Axiom parlance), one gets
the standard univariate polynomials, where no name has been given to the variable.

• FreeModule is used in the implementation of PolynomialRing, as can be found by
using the Lineage option of the browser. This takes as arguments a Ring R and an
OrderedSet S, and generates the free module over R whose generators are indexed
by the elements of S. PolynomialRing builds on this, by keeping the definition of
addition etc., but adding definitions of multiplication, relying on the addition between
the exponents to define the multiplication of polynomials. Let us see precisely how this
is defined (we have deleted lines redundant to the expository points we wish to make)

PolynomialRing(R:Ring,E:OrderedAbelianMonoid):

FiniteAbelianMonoidRing(R,E) with

if R has canonicalUnitNormal then canonicalUnitNormal

== FreeModule(R,E) add

Term:= Record(k:E,c:R)

Rep:= List Term

1 == [[0$E,1$R]]

p1,p2: %

if R has EntireRing then

p1 * p2 ==

null p1 => 0

null p2 => 0

p1.first.k = 0 => p1.first.c * p2

ps = 1 => p1

+/[[[t1.k+t2.k,t1.c*t2.c]$Term for t2 in p2]

for t1 in reverse(p1)]

-- This ’reverse’ is an efficiency improvemant:

-- reduces both time and space [Abbot/Bradford/Davenport]

else

p1 * p2 ==

null p1 => 0

null p2 => 0

p1.first.k = 0 => p1.first.c * p2

p2 = 1 => p1

+/[[[t1.k+t2.k,r]$Term for t2 in p2 | (r:=t1.c*t2.c) ^= 0]

1 An OrderedCancellationAbelianMonoid is a cancellation abelian monoid which is also a totally ordered
set, such that the ordering is compatible with addition: x ≤ y ⇒ x + z ≤ y + z. Since it is a can-
cellation abelian monoid, i.e. satisfies x + y = y + z ⇒ x = y, there is a partial subtraction oper-
ation: x − y is the unique z such that z + y = x, if it exists. An OrderedAbelianMonoidSup is an
OrderedCancellationAbelianMonoid in which, in addition, there is an operation sup with respect to the
partial ordering induced by subtraction. In other words sup(x, y)−x and sup(x, y)−y exist, and sup(x, y)
is minimal (with respect to <) with this property.
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for t1 in reverse(p1)]

-- This ’reverse’ is an efficiency improvemant:

-- reduces both time and space [Abbot/Bradford/Davenport]

if R has CommutativeRing then

p ** nn ==

null p => 0

nn = 0 => 1

p.rest = [] => [[nn * p.first.k, p.first.c ** nn]]

binomThmExpt([p.first],p.rest,nn)

binomThmExpt(x,y,nn) ==

nn = 0 => 1$%

ans,xn,yn:%

bincoef: Integer

powl: List(%):= [x]

for i in 2..n repeat pow1:=[x * powl.first, :powl]

yn:=y; ans:=powl.first; i:=1; bincoef:=nn

for xn in powl.rest repeat

ans:= bincoef * xn * yn + ans

bincoef:= (nn-1) * bincoef quo (i+1); i:=i+1

-- last I and BINCOEF unused

yn:= y * yn

ans + yn

else

p ** nn == repeatMultExpt(p,nn)

repeatNultExpt(x,nn) ==

nn = 0 => 1

y:= x

for i in 2..nn repeat y:= x * y

y

The returned domain belongs to the category FiniteAbelianMonoidRing2, with the addi-
tional property canonicalUnitNormal (see Davenport & Trager [Dave90] for an explanation
of this property) if the ground ring R has this property. The implementation is to take
FreeModule(R,E), and to add (hence the use of this keyword) certain additional opera-
tions – we have just quoted the definition of the unit and multiplication, in fact there are
more. We find it convenient to work in terms of the internal representation of FreeModule,
hence the Rep line (which in turn relies on the definition of Term). We will see further
examples of this methodology later on, as method (4) for the definition of Axiom functors.

2.3.2 The problem specification

Proceeding in a top-down fashion, we can see that we are going to need a construction which
takes as arguments a Ring R, some weights for some symbols, and an initial weight level.
This will return a Ring as result, the ring of weighted polynomials, in the named symbols

2 An “abelian monoid ring” bears the obvious relationship to a “group ring”: viz. it is the set of formal
sums of ring elements, indexed by elements of the abelian monoid, with addition etc. being defined
component-wise, and multiplication making use of the addition of abelian monoid indices. The use of the
word “finite” here is to indicate that we consider only finite sumes, i.e. the ring element is zero for all
but finitely many elements of the abelian monoid.
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(at least), over R, with the weight level as specified. At this point, certain design decisions
need to be made.

• Should the weight level be changeable? In Reduce, it is, and advice from the theory of
repeated approximation (see, for example, Barton & Fitch[Bart72]) led us to believe
that the weight level should be changeable.

• Should the weights themselves be changeable? In Reduce, they are not, and making
them changeable would require the re-computation of the weights of all products. Of
course, the user of Axiom is free to build two different domains with different weights
assigned in each, a flexibility that is not possible in Reduce, and we believe that this
should be sufficient.

• How should the weights be represented. We could produce a separate Axiom data
type, we could accept them as equations, and insist at run time that they be of the
form “symbol=non-negative integer”, or we could treat them as a list of symbols and
a corresponding list of non-negative integers. For simplicity, we chose the last as the
user interface (but see later for the internal handling).

• Should the weighted polynomials contain only the symbols specified in the weight list,
or others? This is debatable, but it seemed simpler, as the implementation progressed,
to allow other symbols, which then effectively have a weight of 0.

We can now probably write the specification part of this functor.

)abbrev domain OWP OrdinaryWeightedPolynomials

OrdinaryWeightedPolynomials(R:RIng,

vl:List Symbol,

wl:List NonNegativeInteger,

wtlevel:NonNegativeInteger):

Ring with

if R has CommutativeRIng then Algebra(R)

coerce : % -> Polynomial(R)

++ coerce will convert back into a Polynomial(R), ignoring weights

coerce : Polynomial(R) -> %

++ coerce a Polynomial(R) into Weighted form,

++ applying weights and ignoring terms

if R has Field then

"/" : (%,%) -> Union(%,"failed")

++ a / b, the division only works if minimum weight

++ of divisor is zero, and if R is a Field

changeWeightLevel : NonNegativeInteger -> Void

++ changeWeightLevel changes the weight level to the new value given:

++ NB: previously calculated terms are not affected

The )abbrev line is necessary for the definition of any functor, since the abbreviation (up to
eight letters, or seven for a category) defines, among other things, the name of the directory
in which the compiled code will be stored.
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Axiom comments begin with either −− or ++. The former fulfil the traditional role of
commenting programs. The latter, which can only appear in the appropriate contexts, are
picked out by the program that builds the HyperDoc database, and can be retrieved by
HyperDoc when it comes to describing operations (as in the case of the changeWeightLevel
operation quoted above) or the whole constructors.

Axiom checks the first word of ++ comments on functions to see that it is the name of the
function. If not, it complains.

In general, there should be examples given for every function, using the + + X syntax.
Comment lines starting with these three characters are displayed as help text when the user
asks about a function with )display operation.

We could now start implementing this data type, but a thought crosses our mind. While
Polynomial is Axiom’s default representation, it is not the only one, and it would be a pity
for this “weighted polynomial” facility not to be available for other implementations as well.
Hence we decide that we will implement OrdinaryWeightedPolynomials in terms of a more
general constructor, which takes the polynomial type as an argument. This leads to the
following implementation for the body of OrdinaryWeightedPolynomials.

== WeightedPolynomials(R,Symbol,IndexedExponents(Symbol),

Polynomal(R),vl,wl,wtlevel)

This is essentially and add form in which nothing is being added: the operations of
OrdinaryWeightedPolynomials will be precisely those of WeightedPolynomials.

The header of WeightedPolynomials now practically writes itself.

)abbrev domain WP WeightedPolynomials

WeightedPolynomials(R:RIng,VarSet: OrderedSet, E:OrderedAbelianMonoidSup,

P:PolynomialCategory(R,E,Varset),

vl:List Varset, wl:List NonNegativeInteger,

wtlevel:NonNegativeInteger):

Ring with

if R has CommutativeRing then Algebra(R)

coerce : % -> P

++ coerce convers back into a "P", ignoring weights

if R has Field then

"/": (%,%) -> Union(%,"failed")

++ a / b division only works if minimum weight

++ of divisor is zero, and if R is a Field

coerce : P -> %

++ coerce a "P" into Weighted form, applying weights and ignoring terms

changeWeightLevel : NonNegativeInteger -> Void

++ changeWeightLevel changes the weight level to the new value given:

++ NB: previously calculated terms are not affected

How are we going to implement this type? There are various possibilities for implementing
a functor in Axiom.

(1) Direct re-use of another domain, as
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OrdinaryWeightedPolynomials re-uses WeightedPolynomials

(2) An existing domain with new operators added by means of an add clause. The previous
method can be viewed as a trivial case of this method.

(3) A new implementation, where the representation of the data objects is defined, but
all operations are defined from scratch (or provided by the default definitions given in
certain categories)

(4) A hybrid approach, where a domain is added to, but we also quote its representation in
order to dive into its internals. This is quite common (see, for example, the definition of
PolynomialRing in terms of FreeModule), but also the most dangerous, as the domain
to which one adds is no longer being treated as a “black box”, but rather as something
one can dive into at will. Any changes in the representation of the domain being added
to can invalidate the new domain being built.

2.3.3 The problem implementation

Let us first try the third method, where we use PolynomialRing as our representation. The
essentials of our implementation will then look as follows (the details of coerce (p36) etc.
will be discussed later).

Rep := PolynomialRing(P,NonNegativeInteger)

w,x1,x2:%

0 == 0$Rep

1 == 1$Rep

x1 = x2 ==

-- Note that we must strip out any terms greater than wtlevel

while degree x1 > wtlevel repeat

x1 := reductum x1

while degree x2 > wtlevel repeat

x1 := reductum x2

x1 =$Rep x2

x1 + x2 == x1 +$Rep x2

-x1 == -$Rep x1

x1 * x2 ==

-- Note that this is probalby an extremely inefficient definition

w:=x1 * $Rep x2

while degree(w) > wtlevel repeat

w:=reductum w

w

One important point that crops up here is the necessity to distinguish the operations of the
representation (PolynomialRing) from those of the type being defined. Since elements can
be viewed as belonging to either the data type or its representation, there is a potential for
ambiguity, when the data type and the representation have operations of the same signature.
In this case, the unqualified operation name will refer to that of the data type, and that of
the representation has to be obtained by use of the $Rep syntax – meaning use the operation
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from the data type Rep. A trivial example of the definition of + given above, which can be
paraphrased in English as “to add two elements of WeightedPolynomials, add them as if
they were elements of the representation, i.e. elements of PolynomialRing.” Slightly more
complicated is the definition of equality, which can be paraphrased in English as “to test
two elements of WeightedPolynomials for equality, first remove any terms of weight greater
than the current weight level, then test them for equality as elements of the represention,
i.e. elements of PolynomialRing”. It is perhaps worth noting that a side-effect of this is
that calls to changeWeightLevel can affect the result of equality tests.

The reader may well say “Ring was meant to define many more operations than you have
done there – where are the rest?” The answer is that these are provided by the defaulting
operations in the various categories. For example, the first operation we have not defined
is the multiplication operation with signature "*":(Integer,%) -> %. This is acquired by
default from the category AbelianGroup, an ancestor of Ring, where the operation is defined
by

AbelianGroup() : Category == SIG where

SIG ==> CancellationAbelianMonoid with

"*" : (Integer,%) -> %

++ n*x is the product of x by the integer n.

2.3.4 The PolynomialRing implementation

Here we use PolynomialRing as our base type, as well as our representation, in what corre-
sponds to method (4) of the choice outlined earlier. Again, we have left the various definitions
of coerce (p36) etc. for later consideration: we focus here on the differences between this
implementation and the previous one.

== PolynomialRing(P,NonNegativeIntger)

add

--representations

Term := Record(k:NonNegativeInteger,c:P)

Rep := List Term

w,x1,x2:%

x1 * x2 ==

null x1 => 0

null x2 => 0

r:P

x1.first.k = 0 =>

[[t2.k,r]$Term for t2 in x2 | (r:=x1.first.c * t2.c) ^= 0]

x2 = 1 => x1

+/[[[n,r]$Term for t2 in x2 | (n:=t1.k+t2.k) <= wtlevel and

(r:=t1.c*t2.c) ^= 0]

for t1 in reverse(x1)]

-- This ’reverse’ is an efficiency improvement:

-- reduces both time and space [Abbott/Bradford/Davenport]

import RepeatedSquaring(%)

x:% ** n:NonNegativeInteger ==



34CHAPTER 2. HOWDOES ONE PROGRAM IN THE AXIOM SYSTEMBY JAMES H. DAVENPORT

zero? n => 1

expt(x,n pretend PositiveInteger)

We still need a definition of equality, since the definition from PolynomialRing is not ad-
equate, as it does not take account of the current value of the weight level. While the
algorithm is very similar, the implementation has to be in terms of the newly-defined Rep,
which is a list of terms. Hence degree(x1) is replaced by x1.first.k. Simliarly, the con-
struction =$Rep does not work, since the Rep is now just a list of objects, and has to be
replaced by an explicit copy of the definition of equality from PolynomialRing, which is in
fact inherited from IndexedDirectProductAbelianGroup.

We no longer need definitions of 0 and 1, which are picked up from PolynomialRing, nor
definitions of addition and subtraction. We do, however, need a definition of multiplication,
since the definition in PolynomialRing does not drop terms greater than the weight level.
This definition is based on that given earlier for multiplication in PolynomialRing.

In addition, we now need a definition of exponentiation. The reason for this is related to one
of the major stumbling-blocks people find when programming in Axiom, so we shall analyse it
carefully. We have already said that it is not necessary to provide all the definitions required
for a data type, as they could be picked up from defaulting packages. When methodologies
(2) or (4) are used, there are in fact two places where such missing definitions could be
picked up from: the defaulting packages or the so-called add chain – the functor which is
quoted in the add clause, or, recursively, the functor which is quoted in its add clause, and
so on. Which should we use? The rule in Axiom is quite simple, though its implications are
profound.

Principle 9: A function is first searched for in the implementation of a given functor, then
recursively up the add chain, without examining defaulting packages. If this fails to find a
definition, then the defaulting packages are searched, from most specific to most general.

The implications of this rule for exponentiation are as follows.

(i) There is a default definition of exponentiation in Monoid, and hence in Ring, which
works by repeated squaring. This definition would be perfectly adequate for our use
(using multiplication we have just defined in WeightedPolynomials)

(ii) There are other definitions of exponentiation in PolynomialRing, as we have seen
earlier, which use the binomial theorem if the coefficient ring is commutative, and a
repeated multiplication algorithm otherwise.

(iii) Therefore, by the rule quoted above, it is one of the definitions in (ii) which will be
used. Hence, they will use the definition of multiplication defined in PolynomialRing,
and so will not take advantage of the weight level.

Hence, in order to get a satisfactory implementation of exponentiation, we need to re-
peat the defaulting definition, or provide some definition that will use the multiplication
of WeightedPolynomials.

A related issue comes up in the definitions of zero? and one?. These are defined, in
AbelianMonoid and Monoid respectively, to have defaulting definitions zero? x == x=0

and one? x == x=1. Since these definitions happen not to be over-ridden in the add chain,
they are the definitions that apply in WeightedPolynomials, and so use WeightedPolynomials’
definition of equality.

However, were a later author of PolynomialRing to add other definitions, these would be
picked up instead.
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2.3.5 Miscellaneous definitions

Here we give some miscellaneous definitions that should form part of the implementation of
WeightedPolynomials. The first three lines deal with the definition of changeWeightLevel.

n:NonNegativeInteger

changeWeightLevel(n) ==

wtlevel:=n

We had earlier decide to represent the weights by a list of variables and a corresponding
list of weights, but this is rather clumsy for internal manipulation. Hence the next few lines
define an internal data structure called lookupList, initialize it, and provide a local function
(i.e. one not usable outside the body of the functor) for looking up the weight attached to
a particular variable.

lookupList: List Record(var:VarSet, weight:NonNegativeInteger)

if #vl ^= #wl then error "incompatible length lists in WeightedPolynomial"

lookupList:=[[v,n] for v in vl for n in wl]

lookup:Varset -> NonNegativeInteger

lookup v ==

l:=lookupList

while l ^= [] repeat

v = l.first.var => return l.first.weight

l:=l.rest

0

We now have to have some method of creating elements of the domain WeightedPolynomials.
The obvious way is to provide a coercion operator from P (which in the case of
OrdinaryWeightedPolnomials will be the usual type Polynomial of Axiom) to
WeightedPolynomials. This is the function of the next few lines. coerce itself is simple:
it just calls innercoerce, passing it the weight level. innercoerce recursively deconstructs
the input polynomial, decreasing the weight level as appropriate.

p:P

z:Integer

innercoerce:(p,z) -> %

innercoerc(p,z) ==

z < 0 => 0

zero? p => 0

mv:= mainVariable p

mv case "failed" => [[0,p]]

n:=lookup(mv)

up:=univariate(p,mv)

ans:%

ans:=0

while not zero? up repeat

d:=degree up

f:=n*d

lcup:=leadingCoefficient up

up:=up-leadingMonomial up

mon:=monomial(1,mv,d)
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f <= z => ans:=ans+[[tm.k+f,mon*tm.c] for tm in innercoerce(lcup,z-f)]

ans

coerce(p):% == innercoerce(p,wtlevel)

The inverse operation is much simpler: we have merely to add up the coefficients.

coerce(w):P == "+"/[tm.c for tm in w]

The last definition is that of coercion from WeightedPolynomials into OutputForm – Axiom’s
type for output (and conversion to TeX etc.). This is fairly simple: the main complexity is in
the specification. Here we have decided that a single term of zero weight will print as such,
but that otherwise each group of terms of a particular weight will be printed parenthesised
(even if there is only one term of that weight). Clearly, it would be possible to adapt this
definition to almost any other desired behaviour.

coerce(p:%):OutputForm ==

zero? p => (0$Integer)::OutputForm

p.first.k = 0 => p.first.c::OutputForm

reduce("+",(reverse [paren(t1.c::OutputForm) for t1 in p])::List OutputForm

2.4 A second problem – FourierSeries

2.4.1 The problem definition

Our aim here is to implement an equivalent of CAMAL’s (Fitch[Fitc74]) handling of trun-
cated Fourier series. We have some domain of “angles” – in CAMAL’s case linear combina-
tions with integer coefficients (lying in the range −63 . . . 63) of the eight angular variables
s, . . . , z. We can build sin or cos of these variables, and use them as coefficients in polynomial
expressions, where products of trigonometric functions are always linearised. There are more
operations provided in CAMAL, e.g. integration with respect to an angular variable, but we
will not bother with these for simplicity of exposition.

Within CAMAL, the coefficients of expressions in these trigonometric functions will therefore
not involve other trigonometric functions, but will involved weighted polynomials. These we
have already defined, and there seems no absolute need to use weighted polynomials, though
they are in practice the most common type of coefficient required. However, we probably
need to assume that the coefficients commute with each other and with the trigonometric
terms, since otherwise the linearisation of products is not well-defined. Furthermore, since

sin(A) sin(B) =
cos(A−B)− cos(A+B)

2

we must be able to divide by two. For simplicity, therefore, we insist on the ability to divide
by any non-zero integer, i.e. that the coefficients should be an Algebra over Q, the Axiom
type Fraction Integer.

2.4.2 The problem specification

The header of our type Fourier Series now nearly writes itself. The arguments of the trigono-
metric functions had better be an ordered set, so that we can order the various trigonometric
functions, and an abelian group so that the addition and subtraction rules can take place.



2.4. A SECOND PROBLEM – FOURIERSERIES 37

It would therefore be possible to require that the domain of these arguments should be an
OrderedAbelianGroup, but this may be too strong, and we will restrict ourselves to insisting
on Join(OrderedSet,AbelianGroup)3

FourierSeries(R:Join(CommutativeRing,Algebra(Fraction Integer)),

E:Join(OrderedSet,AbelianGroup)):

Algebra(R) with

if E has canonical and R has canonical then canonical

coerce : R -> %

++ coerce convers coefficients into Fourier Series

coerce : FourierCompoents(E) -> %

++ coerce converts sin/cos terms into Fourier Series

makeSin : (E,R) -> %

++ makeSin makes a sin expression with given argument and coefficient

makeCos : (E,R) -> %

++ makeCos makes a cos expression with given argument and coefficent

The operations here (with the exception of the last coerce (p39), will be explained in the
next section, are pretty obvious. What about the line containing the word “canonical”?
Axiom’s definition of the attribute canonical is that a domain is canonical if mathematical
equality implies equality of data structure. In particular, it authorises the use of hash-based
techniques. There is a discussion in Davenport & Trager[Dave90] and more detail is available
in Davenport et al.[Dave88]. In our case, we are saying that, if the coefficients and arguments
are canonical, then the data type returned will also be.

The obvious implementation of this is via some kind of FreeModule, using R as the coeffi-
cients and the trigonometric functions as the indices. However, we first need to define the
trigonometric functions themselves, and this is the purpose of the next secion. We will return
to the type FourierSeries in the section following.

2.4.3 The FourierComponent implementation

It would be possible to use Axiom’s general-purpose type Expression to represent trigono-
metric functions, but we settled, for pedagogic reasons and partly to keep our code reasonably
self-contained, on a separate data type.

The requirements on this data type are quite straight-forward. It should provide ways of
making sin and cos functions, and the result should be an OrderedSet so that it can be
passed to FreeModule. The header is then equally straight-forward.

FourierComponent(E:OrderedSet):

OrderedSet with

sin : E -> %

++ sin makes a sin kernel for use in Fourier series

3 An OrderedAbelianGroup would also have the property that a < b ⇒ a+ c < b+ c, but we probably do
not need this
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cos : E -> %

++ cos makes a cos kernel for use in Fourier series

sin? : % -> Boolean

++ sin? is true if term is a sin, otherwise false

argument : % -> E

++ argument returns the argument of a given sin/cos expression

==

Here method (3) seems an appropriate way of defining the data type – all we need store is
the argument and a flag indicating whether we have a sin or cos expression. The first part
of the implementation is trivial.

add

--representations

Rep:=Record(SinIfTrue:Boolean, arg:E)

e:E

x,y:%

sin e == [true,e]

cos e == [false,e]

sin? x == x.SinIfTrue

argument x == x.arg

The harder question is the order to be imposed on FourierComponent. We have chosen, for
no very good reason, to use the order of the arguments, and break ties by sorting cos a as
less than sin a. Clearly this definition could be adapted to any other strategy.

x < y ==

x.arg < y.arg => true

y.arg < x.arg => false

x.SinIfTrue => false

y.SinIfTrue

The last task of this method of printing the results – again this is achieved by means of a con-
version to OutputForm. We have used the constructor bracket, which places the argument
in square brackets, in order to distinguish these elements from the ordinary Expression

constructions of Axiom.

coerce(x):OutputForm ==

hconcat((if x.SinIfTrue then "sin" else "cos")::OutputForm,

bracket((x.arg)::OutputForm))

2.4.4 The FourierSeries implementation

Now that we have FourierComponent, we can define FourierSeries. We chose again to use
method (4), basing the definition on FreeModule(R,FourierComponent(E)). Hence the

start of the definition looks as follows.

== FreeModule(R,FourierComponent(E)) add

-- representations
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Term := Record(k:FourierComponent(E),c:R)

Rep := List Term

multiply : (Term,Term) -> %

w,x1,x2 : %

t1,t2 : Term

n : NonNegativeInteger

z : Integer

e : FourierComponent(E)

a : E

r : R

multiply (p39) is a local function, to be defined later, which will multiply two

terms. The result may well not be a single term, due to linearisation, but is

an element of the FourierSeries domain. We know that cos 0 = 1 and sin 0 = 0.

Furthermore, in order to ensure the ‘‘canonical’’ part, we must be careful about

trigonometric functions with negative arguments (the concept of ‘‘negative’’ makes

sense: an element is negative if it is less than 0). The following definitions

help implement this policy.

1 == [[cos 0,1]]

coerce e ==

sin? e and zero? argument e => 0

if argument e < 0 then

not sin? e => e:=cos(- argument e)

return [[sin(- argument e),-1]]

[[e,1]]

makeCos(a,r) ==

a < 0 => [[cos(-a),r]]

[[cos a,r]]

makeSin(a,r) ==

zero? a => []

a < 0 => [[sin(-a),-r]]

[[sin a,r]]

The operations of addition and subtraction, as well as multiplication by elements

of R, are all well-inherited from FreeModule. We do however have to define multiplication

of two Fourier series, and this is done below.

multiply(t1,t2) ==

r:=(t1.c*t2.c)*(1/2)

s1:=argument t1.k

s2:=argument t2.k

sum:=s1+s2

diff:=s1-s2

sin? t1.k =>

sin? t2.k =>

makeCos(diff,r)+makeCos(sum,-r)

makeSin(sum,r) + makeSin(diff,r)

sin? t2.k =>

makeSin(sum,r) + makeSin(diff,r)

makeCos(diff,r) + makeCos(sum,r)
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x1+x2 ==

null x1 => 0

null x2 => 0

+/[+/[multiply(t1,t2) for t2 in x2] for t1 in x1]



Chapter 3

Axiom and Category Theory

3.1 Covariance and Contravariance

Axiom has an order relation between types. The types can be in one of five possible

relationships.

A type can be more general than another type. For example, Integer is more general

than PositiveInteger.

A type can be more specific than another type. Conversely PositiveInteger is

more specific than Integer.

A type can be equal to another type.

A type can be converted or coerced to another type. For example, Fraction(Polynomial(Integer))

can be coerced to Polynomial(Fraction(Integer)).

A type can be unrelated to another type. String and Expression are not related.

Covariance is converting from a wider type to a narrower type. For instance,

converting from Matrix(Float) to Matrix(Integer).

Contravariance is converting from a narrower type to a wider type. For instance,

converting from Matrix(Integer) to Matrix(Float).

Invariance means that one type cannot convert to another. For instance, a Matrix(Float)

which contains numbers which cannot be represented as Integers cannot be converted

to a Matrix(Integer).

These facts form an order relation, which by definition is reflexive, transitive

and antisymmetric.

Reflexive means that Integer = Integer.

Transitive means that PositiveInteger < Integer < Float implies that PositiveInteger

< Float.

Antisymmetric means that PositiveInteger < Float implies not(Float < PositiveInteger).
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3.2 Axiom Type Lattice

The types in Axiom form a lattice based on the order relationship. It is a lattice

because Axiom supports multiple inheritance.

References of interest include:

Michael Barr and Charles Wells ‘‘Category Theory for Computing Science’’ 1998

www.math.mcgill.ca/triples/Barr-Wells-ctcs.pdf

Saunders Mac Lane ‘‘Catogories for the Working Mathematician’’

Springer-Verlag 2010 ISBN 978-1-4419-3123-8

Steve Awodey ‘‘Category Theory’’

ftp://sumin.in.ua/Books/DVD-021/Awodey_S._Category_Theory(en)(305s).pdf

‘‘Introduction to Category Theory’’

www.youtube.com/watch?v=eu0rj5C2Otg

Luca Cardelli and Peter Wegner ‘‘On understanding types, data abstraction and

polymorphism’’ Computing Surveys, Vol 17 no 4 pp471-522 Dec. 1985

lucacardelli.name/Papers/OnUnderstanding.A4.pdf

A. J. H. Simons, ‘‘Adding Axioms to Cardelli-Wegner Subtyping’’ 1994

staffwww.dcs.shef.ac.uk/people/A.Simons/research/reports/addaxiom.pdf

Dana Scott ‘‘Data Types as Lattices’’

www.cs.ox.ac.uk/files/3287/PRG05.pdf

Roland Backhouse and Marcel Bijsterveld ‘‘Category Theory as Coherently Constructive

Lattice Theory’’ November 1994

3.3 Terms to Understand

Suppose we wish to join Complex with Polynomial(Integer). What would elements

of this combination look like?

The union of the two is a co-product of topological spaces.

The simple combination is not simply adding elements since

i+ x2

is not a valid combination.

We need the algebraic co-product, known as the tensor product. We end up with

a domain of Complex(Polynomial(Integer)).

-> a:Complex(POLY(INT)):=%i+3*x

3x + %i

Type: Complex(Polynomial(Integer))

-> a::POLY(COMPLEX(INT))

3x + %i

Type: Polynomial(Complex(Integer))
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3.4 Category Definition

A category has four parts. We need a set of objects, usually represented as dots.

We need a set of arrows (maps, morphisms), from dot to dot. We need a way to

compose arrows in an associative manner. We need an identity arrow from a dot

to itself.

The set of all arrows from dot A to dot B is written as Homc(A,B) or, sometimes

C(A,B). Notice that the set C(A,B) is disjoint from C(A,D) since each arrow

has a unique domain and co-domain.

For the example of the category Set, the objects are sets and the arrows are functions

between sets. For the category Ring, the objects are rings and the arrows are

ring homomorphisms. Similarly for the category Group, the dots are groups and

the arrows are group homomorphisms. For a fixed Ring R, the category R-Mod has

dots which are left R-modules and the arrows are R-module homomorphisms. We can

also look at the category Mod-R which has dots of right R-modules and arrows which

are R-module homomorphisms. For the category K, if K is a field, the dots are

K-vector spaces and the arrows are K-linear transformations.

In Axiom the dots are Types (such as Integer or Character) and the arrows are

functions between them with signature:

f : Integer -> Character

Relations between categories is called a functor. A functor F takes things in

category C into things in category D. We need a function on objects which maps

objects of C to objects of D. We need a function on arrows which take arrows of

C to arrows of D.

The categories C and D well defined structure. They have a domain and co-domain

of arrows. They have identity arrows. There is a rule of composition of arrows.

These form commutative diagrams.

First we have to make sure the functor F maintains the domain and co-domain structure

of C. When we apply functor F to C we need to preserve all of the structure so

F has to be defined on all of these properties. If we look at two dots in category

C and a function f which is an arrow in C

f

A ----> B

then the functor F has to operate on everything so we get:

Ff

FA ----> FB

This means that if dom is the domain function in C then the functor F commutes

with dom. That is, applying F (dom(f)) = dom(F (f)).

Next we have to make sure the functor F maintains the identity arrow of C. From

the above we know that F (identity(x)) = identity(F (x)).

Finally we have to make sure that the rule for composition of arrows in C is preserved.

So the functor F has to make sure that what composes in C also composes with the

same diagram in D.

Some standard functors are the identity functor 1c which just maps C to C. We

can form a functor which forgets properties so that the category Group could map
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to its underlying set. We can lift a category by forgetting properties, for example,

lifting the category of Abelian Group C to Group D by ‘‘forgetting’’ the commutative

property of C. Similarly the category Ring or the category Module can be mapped

to the underlying Abelian Group. There is also the Constant functor which maps

all of the dots in C to a single dot in D and all of the arrows in C to the identity

arrow in D.

The category CommutativeRing R can be mapped to a Group with the functor GLn

which is the group of invertible NxN matrices with entries in the CommutativeRing

R.

3.5 Monoids and Groups

Given a single element set and a set of arrows from that element to itself we

know from the associative property that (fg)h = f(gh) and from the identity property

that ef = f = fe.

A 1-object category is a monoid. A 1-object category where all of the arrows

are invertible is a group.

If we restrict the category so there is at most one arrow between any two objects

in the set then we have an ordered set.

A functor F from category C to category D consists of

• object function takes objects of C to objects of D

• arrow function takes arrows of C to arrows of D

Structurally we have 3 things to preserve.

• domains and co-domains of arrows. In order to preserve structure the functor

F has to commute with the domain and co-domain functions. That is, F (dom(f)) =
dom(F (f)) and F (co− dom(f)) = co− dom(F (f)).

• identity arrows. The functor F must preserve identity so F (id(x)) = id(F (x)).

• composition properties of arrows. The functor F must take commuting diagrams

to commuting diagrams.



Chapter 4

Axiom Implementation Details

4.1 Makefile

This book is actually a literate program[Knut92] and can contain executable source

code. In particular, the Makefile for this book is part of the source of the

book and is included below.
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Chapter 5

Writing Spad Code

5.1 The Description: label and the )describe command

The describe command will print out the comments associated with Axiom source

code elements. For the category, domain, and package sections the text is taken

from the Description: keyword.

This information is stored in a database and can be queried with

)lisp (getdatabase ’|Integer| ’documentation)

for the Integer domain. However, this information has other uses in the system

so it contains tags and control information. Most tags are removed by the describe

function since the output is intended to be displayed in ASCII on the terminal.

The Description: keyword is in the comment block just after the abbreviation

command. It is freeform and the paragraph will be reflowed automatically to allow

for about 60 characters per line, adjusted for spaces. The Description: section

should be written after the keyword in the ‘‘++’’ comments as in:

)abbrev package D03AGNT d03AgentsPackage

++ Description:

++ This package does some interesting stuff. We can write multiple

++ lines but they should all line up with the first character of

++ the Description keyword. Special \spad{terms} will be removed.

++

++ The above line will force a newline. So will ending a line with \br

++ \tab{5}This will allow primitive formatting\br

++ \tab{5}So you can align text\br

++ \tab{10}Start in column 11\tab{5}and skip 5 spaces\br

++ \tab{10}End in column 11\tab{7}and count out the needed spaces\br

++ \tab{5} note that the last line will not need the br command

As the comment says, the Description should all be aligned under the ‘‘D’’ in

Description. You can indent using \tab{n} which will insert n spaces. You can

force a newline in two ways. Either include a blank line (with the ‘‘++’’ comments)

or use the \br keyword.

Due to lousy parsing algorithms for comments there are various ways this can all

go wrong.
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There should not be any macros between the Description: section and the beginning

of the definition. This is wrong. It will cause the

)describe package d03AgentsPackage

to give the wrong output because it does not find the end of the description section

properly.

)abbrev package D03AGNT d03AgentsPackage

++ Description:

++ This description does not work

LEDF ==> List Expression DoubleFloat

d03AgentsPackage(): E == I where

In the Description: section the \tab{nn} function will be transformed into nn

spaces. If you end each line with a \br you can control alignment.

++ Description:

++ This is an example of a table alignment\br

++ \tab{5}First Item\tab{5} This will line up with the following line\br

++ \tab{5}Second Item\tab{4} This will line up with the following line\br

++ \tab{5}Third Item\tab{5} This will line up with the following line

If the main body of the category, domain, or package begins with properties rather

than functions the Description will be incorrectly recorded. This is a known

bug finding the end of the Description section. For instance, this

++ Description:

++ The category of Lie Algebras.

++ It is used by the domains of non-commutative algebra,

++ LiePolynomial and XPBWPolynomial.

LieAlgebra(R: CommutativeRing): Category == Module(R) with

NullSquare

++ \axiom{NullSquare} means that \axiom{[x,x] = 0} holds.

JacobiIdentity

++ \axiom{JacobiIdentity} means that

++ \axiom{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds.

construct: ($,$) -> $

++ \axiom{construct(x,y)} returns the Lie bracket of \axiom{x}

++ and \axiom{y}.

will give the output

{JacobiIdentity} means that} [x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0 holds.

but reordering it to read:

++ Description:

++ The category of Lie Algebras.

++ It is used by the domains of non-commutative algebra,

++ LiePolynomial and XPBWPolynomial.

LieAlgebra(R: CommutativeRing): Category == Module(R) with

construct: ($,$) -> $

++ \axiom{construct(x,y)} returns the Lie bracket of \axiom{x}

++ and \axiom{y}.

NullSquare
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++ \axiom{NullSquare} means that \axiom{[x,x] = 0} holds.

JacobiIdentity

++ \axiom{JacobiIdentity} means that

++ \axiom{[x,[y,z]]+[y,[z,x]]+[z,[x,y]] = 0} holds.

will give the output

The category of Lie Algebras. It is used by the domains of

non-commutative algebra, LiePolynomial and XPBWPolynomial.

which is correct.
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Chapter 6

Writing test cases
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Appendix A

The Principles of Axiom

Principle 1. AXIOM has an interpreter for interactive use, much like any other system,
and a compiler for creating new user-defined data types. The compiler emphasises strict
type-checking, whilst the interpreter is more oriented towards ease of use.

Principle 2. Every internal Axiom data object belongs to one and only one domain.

Principle 3. Values can freely move from sub-domains to larger ones, and, in the inter-
preter only, in the other direction, provided that this conversion is legitimate.

Principle 4. The interpreter is responsible for performing any chain of coercions necessary
to understand the user’s intentions, or when required to do so by an explicit use of :: . The
compiler will perform a chain of coercions when instructed to do so by the :: operator in
compiled code.

Principle 5. Any set of Axiom domains D1, . . . , Dn can be combined into a (disjoint)
union domain, denoted Union(D1, . . . , Dn). The Di are called the branches of the union.
The operations available on this union domain are:

• equality – two elements are equal if they come from the same branch and are equal in
that branch;

• coercion to OutputForm;

• coercion from each Di to the union domain;

• coercion to each Di from the union domain, which may fail if the union object is not
in the correct branch;

• an in x predicate case , for testing if the union object actually is in a particular branch
or not.

These union domains correspond to what some other languages call “sum types”. A particu-
larly useful case is exemplified by the “exact quotient” operation on Integer: its return type
is Union(Integer,"failed"), where the special token failed is returned if the division is
not exact.

Principle 6. The Axiom library declares a family of second-order types, known as cate-
gories. The categories are arranged in a directed acyclic graph, and each domain belong to
a specific category, and to all the ancestors of that category. The specification of a category
includes
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• all its direct ancestors,

• any additional operations that this category supports, and

• any additional axioms that the operations must satisfy.

The operation Join is used to construct new categories.

Principle 7. Categories can introduce default definitions of operations, which will take
effect in any domain belonging to that category unless overridden by a definition in that
domain, or in a more specific category.

Principle 8. The functors of Axiom are strongly typed: each parameter which is an Axiom
object is specified to come from a particular domain; each parameter which is an Axiom
domain is specified to belong to a particular Axiom category. Similarly, the domain returned
by a particular functor is specified to belong to a particular category. All construction of
domains must satisfy these constraints on the functors.

Principle 9. A function is first searched for in the implementation of a given functor, then
recursively up the add chain, without examining defaulting packages. If this fails to find a
definition, then the defaulting packages are searched, from most specific to most general.
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The Axiom Conventions

Convention 1. Juxtaposition corresponds to (unary) function application.

Convention 2 (borrowed from APL). All system commands, i.e. those that do not per-
form, or affect the performance of, algebraic operations, begin with ). In general, they may
be contracted as far as is unambiguous, so that )set message type on can be contracted
as far as )se m ty on

Convention 3. The symbol % refers to the most recently computed proper value (i.e. not
of the Void domain). %%(n), or %%n, refers to the value numbered n, if n is a positive
integer. If n is a negative integer, %%(n) refers to the value of the |n|’th previous step.
Also, %pi refers to π, %e to e ≈ 2.718281828 and %i to

√
−1

Convention 4 (a convention of the library, rather than of the kernel). Parentheses
– () – are used for grouping and function application, brackets – [] – are used for constructing
lists, and braces – {} – are used for constructing sets.

Convention 5. The :: in x operator, used as in

Axiomobject :: Axiomdomain

can be used to convert the object to lie in the specified domain.

Convention 6 (Of the library authors). The notation

list of variables+− > expression

defines an anonymous function of those variables. It corresponds to the lambda-calculus
expression “λvariables.expression”.

Convention 7. The names of Axiom functions are either special symbols (such as +) or
complete english words strung together. In this case, every word after the first is capitalised.
Thus integrate but complexIntegrate. In addition:

• all boolean predicates end in a ? , as in odd?, which tests if a number is odd

• all destructive functions which operate on data structures end in a ! , as in reverse!,
which reverses a list destructively.

Conversely, the names of domains (and other constructors we will come to later) con-
sist of english words strung together, all of which are capitalised, as in IntegerMod or
UnivariatePuiseuxSeries.
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Convention 8. Whenever a category, or domain, is being discussed in Axiom, the symbol
% stands for the domain in question, or for any domain from the category in question.

Convention 9. Axiom comments can be introduced by −− or ++. Those beginning ++
are intended for the user, and can be retrieved by the on-line help system.

Convention 10. The infix binary predicate has can be used to test if domains belong to
categories, or if they have specified attributes.

Convention 11. Every Axiom constructor, i.e. functor or category, has an abbrevia-
tion, consisting of at most eight upper-case letters (seven in the case of categories). These
serve two purposes: they can be used on input and output in order to make the names of the
types shorter, and they denote the directory in which the corresponding Axiom library lives.
The defaults for category Cat, with abbreviation CAT, are called Cat& , with abbreviation
CAT-.



Appendix C

Example Code

C.1 domain WP WeightedPolynomials

--Copyright The Numerical Algorithms Group Limited 1992.

— domain WP WeightedPolynomials —

)abbrev domain WP WeightedPolynomials

++ Author: James Davenport

++ Date Created: 17 April 1992

++ Date Late Updated: 13 July 2016 by Tim Daly

++ Basic Functions: Ring, changeWeightLevel

++ Related Constructors: PolynomialRing

++ Also See: OrdinaryWeightedPolynomials

++ AMS Classificaitons:

++ Keywords:

++ References:

++ Description:

++ This domain represents truncated weighted polynomials over a general

++ (not necessarily commutative) polynomial type. The variables must be

++ specified, as must the weights.

++ The representation is sparse

++ in the sense that only non-zero terms are represented

WeightedPolynomials(R,VarSet,E,P,vl,wl,wtlevel) : SIG == CODE where

R : Ring

Varset : OrderedSet

E : OrderedAbelianMonoidSup

P : PolynomialCategory(R,E,Varset)

vl : List Varset

wl : List NonNegativeInteger

wtlevel : NonNegativeInteger

SIG ==> Ring with

if R has CommutativeRing then Algebra(R)

coerce : % -> P

++ coerce converts back into "P", ignoring weights
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if R has Field then

"/" : (%,%) -> Union(%,"failed")

coerce : P -> %

++ coerce a "P" into Weighted form, applying weights and ignoring terms

changeWeightLevel : NonNegativeInteger -> Void

++ changeWeightLevel changes the weight level to the new value given:

++ NB: previously calculated terms are not affected

CODE ==> add

-- representations

Rep := PolynomialRIng(P,NonNegativeInteger)

p : P

w,x1,x2 : %

n : NonNegativeInteger

z : Integer

changeWeightLevel(n) ==

wtlevel := n

lookupList : List Record(var:Varset, weight:NonNegativeInteger)

if #vl ^= #wl then error "incompatible length lists in WeightedPolynomial"

lookupList := [[v,n] for v in vl for n in wl]

-- local operations

lookup : Varset -> NonNegativeInteger

loopkup v ==

l := lookupList

while l ^= [] repeat

v = l.first.var => return l.first.weight

l := l.rest

0

innercoerce : (p,z) -> %

innercoerce(p,z) ==

z < 0 => 0

zero? p => 0

mv := mainVariable p

mv case "failed" => monomial(p,0)

n := lookup(mv)

up := univariate(p,mv)

ans : %

ans := 0

while not zero? up repeat

d := degree up

f := n*d

lcup := leadingCoefficient up
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up := up-leadingMonomial up

mon := monomial(1,mv,d)

f <= z =>

tmp := innercoerce(lcup,z-f)

while not zero? tmp repeat

ans := ans+monomial(mon*leadingCoefficent(tmp),degree(tmp)+f)

tmp := reductum tmp

ans

coerce(p):% == innercoerce(p,wtlevel)

coerce(w):P == "+"/[c for c in coefficients w]

coerce(p:%):OutputForm ==

zero? p => (0$Integer)::OutputForm

degree p = 0 => leadingCoefficient(p)::OutputForm

reduce("+",(reverse [paren(c::OutputForm) for c in coefficients p])

::List OutputForm)

0 == 0$Rep

1 == 1$Rep

x1 = x2 ==

-- Note that we must strip out any terms greater than wtlevel

while degree x1 > wtlevel repeat

x1 := reductum x1

while degree x2 > wtlevel repeat

x2 := reductum x2

x1 = $Rep x2

x1 + x2 ==

x1 +$Rep x2

x1 * x2 ==

-- Note that this is probably an extremely inefficient definition

w := x1 *$Rep x2

while degree(2) > wtlevel repeat

w := reductum w

w

———-

C.2 domain OWP OrdinaryWeightedPolynomials

--Copyright The Numerical Algorithms Group Limited 1992.

— domain OWP OrdinaryWeightedPolynomials —

)abbrev domain OWP OrdinaryWeightedPolynomials

++ Author: James Davenport

++ Date Created: 17 April 1992

++ Date Last Updated 13 July 2016 by Tim Daly



60 APPENDIX C. EXAMPLE CODE

++ Basic Functions: Ring, changeWeightLevel

++ Related Constructors: WeightedPolynomials

++ Also See: PolynomialRing

++ AMS classifications:

++ Keywords:

++ References:

++ Description:

++ This domain represents truncated weighted polynomials over the

++ "Polynomial" type. The variables must be

++ specified, as must the weights.

++ The representation is sparse

++ in the sense that only non-zero terms are represented

OrdinaryWeightedPolynomials(R,vl,wl,wtlevel) : SIG == CODE where

R : Ring

vl : List Symbol

wl : List NonNegativeInteger

wtlevel : NonNegativeInteger

SIG ==> Ring with

if R has CommutativeRing then Algebra(R)

coerce : % -> Polynomial(R)

++ coerce converts back into a Polynomial(R), ignoring weights

coerce : Polynomial(R) -> %

++ coerce a Polynomial(R) into Weighted form,

++ applying weights and ignoring terms

if R has Field then

"/": (%,%) -> Union(%,"failed")

++ a / b only works if minimum weight of divisor is zero,

++ and if R is a Field

changeWeightLevel : NonNegativeInteger -> Void

++ This changes the weight level to the new value given:

++ NB: previously calculated terms are not affected

CODE ==> WeightedPolynomials(R,Symbol,IndexedExponents(Symbol),

Polynomial(R),vl,wl,wtlevel)

———-

C.3 domain WP2 WeightedPolynomials2

— domain WP2 WeightedPolynomials2 —

)abbrev domain WP2 WeightedPolynomials2

++ Author: James Davenport

++ Date Created: 17 April 1992

++ Date Last Updated 13 July 2016 by Tim Daly
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++ Basic Functions: Ring, changeWeightLevel

++ Related Constructors: PolynomialRing

++ Also See: OrdinaryWeightedPolynomials

++ AMS classifications:

++ Keywords:

++ References:

++ Description:

++ This domain represents truncated weighted polynomials over a general

++ (not necessarily commutative) polynomial type. The variables must be

++ specified, as must the weights.

++ The representation is sparse

++ in the sense that only non-zero terms are represented

WeightedPolynomials2(R,Varset,E,P,vl,wl,wtlevel) : SIG == CODE where

R : Ring

Varset : OrderedSet

E : OrderedAbelianMonoidSup

P : PolynomialCategory(R,E,VarSet)

vl : List VarSet

wl : List NonNegativeInteger

wtlevel : NonNegativeInteger

SIG ==> Ring with

if R has CommutativeRing then Algebra(R)

coerce : % -> P

++ coerce converts back into a "P", ignoring weights

if R has Filed then

"/" : (%,%) -> Union(%,"failed")

++ a / b division only works if minimum weight of divisor is zero,

++ and if R is a Field

coerce : P -> %

++ coerce a "P" into Weighted form, applying weights and ignoring terms

changeWeightLevel : NonNegativeInteger -> Void

++ This changes the weight level to the new value given:

++ NB: previously calculated terms are not affected

CODE ==> PolynomialRing(P,NonNegativeInteger) add

-- representations

Term := Record(k:NonNegativeInteger,c:P)

Rep := List Term

p : P

w,x1,x2 : %

n : NonNegativeInteger

z : Integer

changeWeightLevel(n) ==

wtlevel := n
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lookupList : List Record(var: VarSet, weight:NonNegativeInteger)

if #vl ^= #wl then error "incompatible length lists in WeightedPolymonial"

lookupList := [[v,n] for v in vl for n in wl]

-- local operation

lookup : VarSet -> NonNegativeIntger

lookup v ==

l := lookupList

while l ^= [] repeat

v = l.first.var => return l.first.weight

l := l.rest

0

innercoerce:(p,z) -> %

innercoerce(p,z) ==

z < 0 => 0

zero? p => 0

mv := mainVariable p

mv case "failed" => [[0,p]]

n := lookup(mv)

up := univariate(p,mv)

ans : %

ans := 0

while not zero? up repeat

d := degree up

f := n*d

lcup := leadingCoefficient up

up := up - leadingMonomial up

mon := monomial(1,mv,d)

f < z => ans:=ans+[[tm.k+f,mon*tm.c] for tm in innercoerce(lcup,z-f)]

ans

coerce(p):% ==

innercoerce(p,wtlevel)

coerce(w):P ==

"+"/[tm.c for tm in w]

x1 = x2 ==

-- Not that we must strip out any terms greater than wtlevel

while not null x1 and x1.first.k > wtlevel repeat

x1 := x1.rest

while not null x2 and x2.first.k > wtlevel repeat

x2 := x2.rest

while not null x1 and not null x2 repeat

x1.first.k ^= x2.first.k => return false

x1.first.c ^= x2.first.c => return false

x1 := x1.rest

x2 := x2.rest

null x1 and null x2
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x1 * x2 ==

null x1 => 0

null x2 => 0

r : P

x1.first.k = 0 =>

[[t2.k,r]$Term for t2 in x2 | (r:=x1.first.c * t2.c) ^=0 ]

x2 = 1 => x1

+/[[[n,r]$Term for t2 in x2 | (n:=t1.k+t2.k) <= wtlevel and

(r:=t1.c*t2.c) ^= 0]

for t1 in reverse(x1)]

-- This ’reverse’ is an efficiency improvement:

-- reduces both time and space [Abbott/Bradford/Davenport]

import RepeatedSquaring(%)

x:% ** n:NonNegativeInteger ==

zero? n => 1

expt(x,n pretend PositiveInteger)

coerce(p:%):OutputForm ==

zero? p => (0$Integer)::OutputForm

p.first.k = 0 => p.first.c::OutputForm

reduce("+",(reverse [paren(t1.c::OutputForm) for t1 in p])

::List OutputForm)

———-

C.4 domain FCOMP FourierComponent

--Copyright The Numerical Algorithms Group Limited 1992

— domain FCOMP FourierComponent —

)abbrev domain FCOMP FourierComponent

++ Author: James Davenport

++ Date Created: 17 April 1992

++ Date Last Updated: 13 July 2016 by Tim Daly

++ Basic Functions:

++ Related Constructors:

++ Also See:

++ AMS Classifications:

++ Keywords:

++ References:

++ Description:

FourierComponent(E) : SIG == CODE where

E : OrderedSet

SIG ==> OrderedSet with

sin : E -> %

++ sin makes a sin kernel for use in Fourier series

cos : E -> %

++ cos makes a cos kernel for use in Fourier series



64 APPENDIX C. EXAMPLE CODE

sin? : % -> Boolean

++ sin? true if term is a sin, otherwise false

argument : % -> E

++ argument returns the argument of a given sin/cos expression

CODE ==> add

-- representations

Rep := Record(SinIfTrue:Boolean, arg:E)

e : E

x,y : %

sin e ==

[true,e]

cos e ==

[false,e]

sin? x ==

x.arg

argument x ==

x.arg

coerce(x):OutputForm ==

hconcat((if x.SinIfTrue then "sin" else "cos")::OutputForm,

bracket((x.arg)::OutputForm))

x < y ==

x.arg < y.arg => true

y.arg < x.arg => false

x.SinIfTrue => false

y.SinIfTrue

———-

C.5 domain FSERIES FourierSeries

— domain FSERIES FourierSeries —

)abbrev domain FSERIES FourierSeries

++ Author: James Davenport

++ Date Created: 17 April 1992

++ Date Last Updated: 13 July 2016 by Tim Daly

++ Basic Functions:

++ Related Constructors:

++ Also See:

++ AMS Classifications:

++ Keywords:

++ References:
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++ Description:

FourierSeries(R,E) : SIG == CODE where

R : Join(CommutativeRing,Algebra(Fraction Integer))

E : Join(OrderedSet,AbelianGroup)

SIG ==> Algebra(R) with

if E has canonical and R has canonical the canonical

coerce : R -> %

++ coerce converts coefficents into Fourier Series

coerce : FourierComponent(E) -> %

++ coerc converts sin/cos terms into Fourier Series

makeSin : (E,R) -> %

++ makeSin makes a sin expression with given argument and coefficient

makeCos : (E,R) -> %

++ makeCos makes a cos expression with given argument and coefficient

CODE ==> FreeModule(R,FourierCompoent(E)) add

-- representations

Term := Record(k:FourierComponent(E),c:R)

Rep := List Term

w,x1,x2 : %

t1,t2 : Term

n : NonNegativeInteger

z : Integer

e : FourierComponent(E)

a : E

r : R

1 ==

[[cos 0,1]]

coerce e ==

sin? e and zero? argument e => 0

if argument e < 0 then

not sin? e => e:=cos(- argument e)

return [[sin(- argument e),-1]]

[[e,1]]

multiply : (Term,Term) -> %

multiply(t1,t2) ==

r := (t1.c*t2.c)*(1/2)

s1 := argument t1.k

s2 := argument t2.k

sum := s1+s2

diff := s1-s2

sin? t1.k =>

sin? t2.k =>

makeCos(diff,r) + makeCos(sum,-r)
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makeSin(sum,r) + makeSin(diff,r)

sin? t2.k =>

makeSin(sum,r) + makeSin(diff,r)

makeCos(diff,r) + makeCos(sum,r)

x1*x2 ==

null x1 => 0

null x2 => 0

+/[+/[multiply(t1,t2) for t2 in x2] for t1 in x1]

makeCos(a,r) ==

a < 0 => [[cos(-a),r]]

[[cos a,r]]

makeSing(a,r) ==

zero? a => []

a < 0 => [[sin(-a),-r]]

[[sin a,r]]

———-
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The Makefile

— * —

PROJECT=bookvol2

TANGLE=/usr/local/bin/NOTANGLE

WEAVE=/usr/local/bin/NOWEAVE

LATEX=/usr/bin/latex

MAKEINDEX=/usr/bin/makeindex

all:

${WEAVE} -t8 -delay ${PROJECT}.pamphlet >${PROJECT}.tex

${LATEX} ${PROJECT}.tex 2>/dev/null 1>/dev/null

${MAKEINDEX} ${PROJECT}.idx

${LATEX} ${PROJECT}.tex 2>/dev/null 1>/dev/null

———-
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Abstract: The topic of this article is the symmetry

analysis of differential equations and the applications of

computer algebra to th extensive analytical calculations

which are usually involved in it. The whole area naturally

decomposes into two parts depending on whether ordinary

or partial differential equations are considered. We show

how a symmetry may be applied to lower the order of an

ordinary differential equation or to obtain similarity

solutions of partial differential equations. The computer

algebra packages SODE and SPDE, respectively, which

have been developed to perform almost all algebraic

manipulations necessary to determine the symmetry group of

a given differential equation, are presented. Futhermore

it is argued that the application of computer algebra

systems has qualitatively changed this area of applied
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