From 5694cfb5b4e917575ff4ebea1bef9eae501d6e10 Mon Sep 17 00:00:00 2001
From: Tim Daly
Date: Sun, 25 Sep 2016 19:54:16 0400
Subject: [PATCH] src/interp/format.lisp bug 7237: coerce failure fixed
Goal: Axiom Maintenance
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{bug 7237: coerce failure}
\begin{verbatim}
)d op coerce
There are 194 exposed functions called coerce :
[1] List(D2) > D from D if D2 has FIELD and D has AFSPCAT(D2)
[2] D > List(D2) from D if D has AFSPCAT(D2) and D2 has FIELD
[3] D1 > D from D if D has ALGEBRA(D1) and D1 has COMRING
Daly Bug
>> System error:
D2 is not of type SEQUENCE.
Continuing to read the file...
R
R
RThere are 194 exposed functions called coerce :
R [1] List D2 > D from D if D2 has FIELD and D has AFSPCAT D2
R [2] D > List D2 from D if D has AFSPCAT D2 and D2 has FIELD
R [3] D1 > D from D if D has ALGEBRA D1 and D1 has COMRING
R [4] Vector D2 > AlgebraGivenByStructuralConstants(D2,D3,D4,D5)
R from AlgebraGivenByStructuralConstants(D2,D3,D4,D5)
R if D2 has FIELD and D5: VECTOR MATRIX D2 and D3: PI and D4
R : LIST SYMBOL
\end{verbatim}
Now reads:
(1) > )d op coerce
There are 195 exposed functions called coerce :
[1] List(D2) > D from D if D2 has FIELD and D has AFSPCAT(D2)
[2] D > List(D2) from D if D has AFSPCAT(D2) and D2 has FIELD
[3] D1 > D from D if D has ALGEBRA(D1) and D1 has COMRING
[4] Vector(D2) > AlgebraGivenByStructuralConstants(D2,D3,D4,D5)
from AlgebraGivenByStructuralConstants(D2,D3,D4,D5)
if D2 has FIELD and D5: VECTOR(MATRIX(D2)) and D3: PI and
D4: LIST(SYMBOL)
[5] SparseMultivariatePolynomial(Integer,Kernel(AlgebraicNumber))
> AlgebraicNumber
from AlgebraicNumber
[6] D2 > Any from AnyFunctions1(D2) if D2 has TYPE
[7] Vector(FortranExpression([construct,QUOTEJINT,QUOTEX,QUOTEELAM],
[construct],MachineFloat)) > Asp10(D2)
from Asp10(D2) if D2: SYMBOL
[8] Vector(FortranExpression([construct],[construct,QUOTEXC],
MachineFloat)) > Asp19(D2)
from Asp19(D2) if D2: SYMBOL
[9] FortranExpression([construct,QUOTEX],[construct],MachineFloat)
> Asp1(D2)
from Asp1(D2) if D2: SYMBOL
[10] Matrix(FortranExpression([construct],[construct,QUOTEX,QUOTE
HESS],MachineFloat)) > Asp20(D2)
from Asp20(D2) if D2: SYMBOL
[11] FortranExpression([construct],[construct,QUOTEXC],MachineFloat)
> Asp24(D2)
from Asp24(D2) if D2: SYMBOL
[12] Vector(FortranExpression([construct,QUOTEX],[construct,QUOTEY],
MachineFloat)) > Asp31(D2)
from Asp31(D2) if D2: SYMBOL
[13] Vector(FortranExpression([construct],[construct,QUOTEX],
MachineFloat)) > Asp35(D2)
from Asp35(D2) if D2: SYMBOL
[14] Vector(FortranExpression([construct,QUOTEX,QUOTEEPS],[construct
,QUOTEY],MachineFloat)) > Asp41(D2,D3,D4)
from Asp41(D2,D3,D4) if D2: SYMBOL and D3: SYMBOL and D4:
SYMBOL
[15] Vector(FortranExpression([construct,QUOTEEPS],[construct,QUOTE
YA,QUOTEYB],MachineFloat)) > Asp42(D2,D3,D4)
from Asp42(D2,D3,D4) if D2: SYMBOL and D3: SYMBOL and D4:
SYMBOL
[16] FortranExpression([construct],[construct,QUOTEX],MachineFloat)
> Asp49(D2)
from Asp49(D2) if D2: SYMBOL
[17] FortranExpression([construct],[construct,QUOTEX],MachineFloat)
> Asp4(D2)
from Asp4(D2) if D2: SYMBOL
[18] Vector(FortranExpression([construct],[construct,QUOTEXC],
MachineFloat)) > Asp50(D2)
from Asp50(D2) if D2: SYMBOL
[19] Vector(FortranExpression([construct],[construct,QUOTEX],
MachineFloat)) > Asp55(D2)
from Asp55(D2) if D2: SYMBOL
[20] Vector(FortranExpression([construct],[construct,QUOTEX],
MachineFloat)) > Asp6(D2)
from Asp6(D2) if D2: SYMBOL
[21] Vector(FortranExpression([construct,QUOTEX,QUOTEY],[construct],
MachineFloat)) > Asp73(D2)
from Asp73(D2) if D2: SYMBOL
[22] Matrix(FortranExpression([construct,QUOTEX,QUOTEY],[construct],
MachineFloat)) > Asp74(D2)
from Asp74(D2) if D2: SYMBOL
[23] Matrix(FortranExpression([construct,QUOTEX],[construct],
MachineFloat)) > Asp77(D2)
from Asp77(D2) if D2: SYMBOL
[24] Vector(FortranExpression([construct,QUOTEX],[construct],
MachineFloat)) > Asp78(D2)
from Asp78(D2) if D2: SYMBOL
[25] Vector(FortranExpression([construct,QUOTEX],[construct,QUOTEY],
MachineFloat)) > Asp7(D2)
from Asp7(D2) if D2: SYMBOL
[26] Matrix(FortranExpression([construct,QUOTEXL,QUOTEXR,QUOTEELAM],
[construct],MachineFloat)) > Asp80(D2)
from Asp80(D2) if D2: SYMBOL
[27] FortranExpression([construct,QUOTEX],[construct,QUOTEY],
MachineFloat) > Asp9(D2)
from Asp9(D2) if D2: SYMBOL
[28] ArrayStack(D2) > OutputForm from ArrayStack(D2)
if D2 has SETCAT and D2 has SETCAT
[29] BinaryExpansion > RadixExpansion(2) from BinaryExpansion
[30] BinaryExpansion > Fraction(Integer) from BinaryExpansion
[31] List(Integer) > D from D if D has BLMETCT
[32] List(CartesianTensor(D2,D3,D4)) > CartesianTensor(D2,D3,D4)
from CartesianTensor(D2,D3,D4) if D2: INT and D3: NNI and
D4 has COMRING
[33] List(D4) > CartesianTensor(D2,D3,D4) from CartesianTensor(D2,
D3,D4)
if D4 has COMRING and D2: INT and D3: NNI
[34] SquareMatrix(D3,D4) > CartesianTensor(D2,D3,D4)
from CartesianTensor(D2,D3,D4) if D3: NNI and D4 has
COMRING and D2: INT
[35] DirectProduct(D3,D4) > CartesianTensor(D2,D3,D4)
from CartesianTensor(D2,D3,D4) if D3: NNI and D4 has
COMRING and D2: INT
[36] List(D2) > Database(D2) from Database(D2)
if D2 has OrderedSetwith
?.? : (%,Symbol) > String
display : % > Void
fullDisplay : % > Void
[37] DecimalExpansion > RadixExpansion(10) from DecimalExpansion
[38] DecimalExpansion > Fraction(Integer) from DecimalExpansion
[39] Dequeue(D2) > OutputForm from Dequeue(D2) if D2 has SETCAT and
D2 has SETCAT
[40] DirichletRing(D2) > Stream(D2) from DirichletRing(D2) if D2
has RING
[41] Stream(D2) > DirichletRing(D2) from DirichletRing(D2) if D2
has RING
[42] DirichletRing(D2) > (PositiveInteger > D2) from DirichletRing
(D2)
if D2 has RING
[43] (PositiveInteger > D2) > DirichletRing(D2) from DirichletRing
(D2)
if D2 has RING
[44] DataList(D2) > List(D2) from DataList(D2) if D2 has ORDSET
[45] List(D2) > DataList(D2) from DataList(D2) if D2 has ORDSET
[46] SegmentBinding(Expression(D3)) > SegmentBinding(Float)
from DrawNumericHack(D3)
if D3 has Join(OrderedSet,IntegralDomain,ConvertibleTo(
Float))
[47] D1 > D from D if D has DVARCAT(D1) and D1 has ORDSET
[48] FortranCode > OutputForm from FortranCode
[49] FortranExpression(D2,D3,D4) > Expression(D4)
from FortranExpression(D2,D3,D4)
if D2: LIST(SYMBOL) and D3: LIST(SYMBOL) and D4 has FMTC
[50] D2 > D1 from FiniteFieldHomomorphisms(D2,D3,D1)
if D3 has FFIELDC and D1 has FAXF(D3) and D2 has FAXF(D3)
[51] D2 > D1 from FiniteFieldHomomorphisms(D1,D3,D2)
if D3 has FFIELDC and D1 has FAXF(D3) and D2 has FAXF(D3)
[52] D > XRecursivePolynomial(D2,D3) from D
if D has FLALG(D2,D3) and D2 has ORDSET and D3 has COMRING
[53] D > XDistributedPolynomial(D2,D3) from D
if D has FLALG(D2,D3) and D2 has ORDSET and D3 has COMRING
[54] D1 > D from D if D has FLALG(D1,D2) and D1 has ORDSET and D2
has COMRING
[55] Record(localSymbols: SymbolTable,code: List(FortranCode)) > D
from D
if D has FMC
[56] FortranCode > D from D if D has FMC
[57] List(FortranCode) > D from D if D has FMC
[58] Matrix(MachineFloat) > D from D if D has FMC
[59] Record(localSymbols: SymbolTable,code: List(FortranCode)) > D
from D
if D has FMFUN
[60] FortranCode > D from D if D has FMFUN
[61] List(FortranCode) > D from D if D has FMFUN
[62] D > String from D if D has FNCAT
[63] String > D from D if D has FNCAT
[64] D2 > ScriptFormulaFormat from ScriptFormulaFormat1(D2) if D2
has SETCAT
[65] OutputForm > ScriptFormulaFormat from ScriptFormulaFormat
[66] Record(localSymbols: SymbolTable,code: List(FortranCode)) > D
from D
if D has FORTFN
[67] FortranCode > D from D if D has FORTFN
[68] List(FortranCode) > D from D if D has FORTFN
[69] Equation(Expression(Complex(Float))) > FortranProgram(D2,D3,D4
,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[70] Equation(Expression(Float)) > FortranProgram(D2,D3,D4,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[71] Equation(Expression(Integer)) > FortranProgram(D2,D3,D4,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[72] Expression(Complex(Float)) > FortranProgram(D2,D3,D4,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[73] Expression(Float) > FortranProgram(D2,D3,D4,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[74] Expression(Integer) > FortranProgram(D2,D3,D4,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[75] Equation(Expression(MachineComplex)) > FortranProgram(D2,D3,D4
,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[76] Equation(Expression(MachineFloat)) > FortranProgram(D2,D3,D4,
D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[77] Equation(Expression(MachineInteger)) > FortranProgram(D2,D3,D4
,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[78] Expression(MachineComplex) > FortranProgram(D2,D3,D4,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[79] Expression(MachineFloat) > FortranProgram(D2,D3,D4,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[80] Expression(MachineInteger) > FortranProgram(D2,D3,D4,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[81] Record(localSymbols: SymbolTable,code: List(FortranCode)) >
FortranProgram(D2,D3,D4,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[82] List(FortranCode) > FortranProgram(D2,D3,D4,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[83] FortranCode > FortranProgram(D2,D3,D4,D5)
from FortranProgram(D2,D3,D4,D5)
if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
void) and D4: LIST(SYMBOL) and D5: SYMTAB
[84] FourierComponent(D3) > FourierSeries(D2,D3) from FourierSeries
(D2,D3)
if D3 has Join(OrderedSet,AbelianGroup) and D2 has Join(
CommutativeRing,Algebra(Fraction(Integer)))
[85] D1 > FourierSeries(D1,D2) from FourierSeries(D1,D2)
if D1 has Join(CommutativeRing,Algebra(Fraction(Integer)))
and D2 has Join(OrderedSet,AbelianGroup)
[86] Fraction(Polynomial(Fraction(D2))) > D from D
if D2 has INTDOM and D2 has ORDSET and D has FS(D2)
[87] Polynomial(Fraction(D2)) > D from D
if D2 has INTDOM and D2 has ORDSET and D has FS(D2)
[88] Fraction(D2) > D from D if D2 has INTDOM and D2 has ORDSET and
D has FS(D2)
[89] SparseMultivariatePolynomial(D2,Kernel(D)) > D from D
if D2 has RING and D2 has ORDSET and D has FS(D2)
[90] FortranScalarType > SExpression from FortranScalarType
[91] FortranScalarType > Symbol from FortranScalarType
[92] Symbol > FortranScalarType from FortranScalarType
[93] String > FortranScalarType from FortranScalarType
[94] FortranScalarType > FortranType from FortranType
[95] FortranType > OutputForm from FortranType
[96] Record(localSymbols: SymbolTable,code: List(FortranCode)) > D
from D
if D has FVC
[97] FortranCode > D from D if D has FVC
[98] List(FortranCode) > D from D if D has FVC
[99] Vector(MachineFloat) > D from D if D has FVC
[100] Record(localSymbols: SymbolTable,code: List(FortranCode)) > D
from D
if D has FVFUN
[101] FortranCode > D from D if D has FVFUN
[102] List(FortranCode) > D from D if D has FVFUN
[103] UnivariatePuiseuxSeries(D2,D3,D4) >
GeneralUnivariatePowerSeries(D2,D3,D4)
from GeneralUnivariatePowerSeries(D2,D3,D4)
if D2 has RING and D3: SYMBOL and D4: D2
[104] Variable(D3) > GeneralUnivariatePowerSeries(D2,D3,D4)
from GeneralUnivariatePowerSeries(D2,D3,D4)
if D3: SYMBOL and D2 has RING and D4: D2
[105] Heap(D2) > OutputForm from Heap(D2) if D2 has SETCAT and D2
has ORDSET
[106] HexadecimalExpansion > RadixExpansion(16) from
HexadecimalExpansion
[107] HexadecimalExpansion > Fraction(Integer) from
HexadecimalExpansion
[108] OutputForm > String from HTMLFormat
[109] String > IndexCard from IndexCard
[110] List(D5) > PolynomialIdeals(D2,D3,D4,D5)
from PolynomialIdeals(D2,D3,D4,D5)
if D5 has POLYCAT(D2,D3,D4) and D2 has FIELD and D3 has
OAMONS and D4 has ORDSET
[111] D1 > AssociatedJordanAlgebra(D2,D1) from
AssociatedJordanAlgebra(D2,D1)
if D2 has COMRING and D1 has NAALG(D2)
[112] D > D1 from D if D has KOERCE(D1) and D1 has TYPE
[113] D1 > D from D if D has LALG(D1) and D1 has RING
[114] D1 > AssociatedLieAlgebra(D2,D1) from AssociatedLieAlgebra(D2
,D1)
if D2 has COMRING and D1 has NAALG(D2)
[115] D > Stream(Record(k: Integer,c: D2)) from D
if D has LOCPOWC(D2) and D2 has FIELD
[116] Stream(Record(k: Integer,c: D2)) > D from D
if D2 has FIELD and D has LOCPOWC(D2)
[117] ThreeDimensionalMatrix(D2) > PrimitiveArray(PrimitiveArray(
PrimitiveArray(D2)))
from ThreeDimensionalMatrix(D2) if D2 has SETCAT
[118] PrimitiveArray(PrimitiveArray(PrimitiveArray(D2))) >
ThreeDimensionalMatrix(D2)
from ThreeDimensionalMatrix(D2) if D2 has SETCAT
[119] D2 > (() > D2) from MappingPackage1(D2) if D2 has SETCAT
[120] D1 > D from D
if D2 has RING and D has MATCAT(D2,D3,D1) and D3 has FLAGG
(D2) and D1 has FLAGG(D2)
[121] MachineComplex > Complex(Float) from MachineComplex
[122] Complex(MachineInteger) > MachineComplex from MachineComplex
[123] Complex(MachineFloat) > MachineComplex from MachineComplex
[124] Complex(Integer) > MachineComplex from MachineComplex
[125] Complex(Float) > MachineComplex from MachineComplex
[126] MachineInteger > MachineFloat from MachineFloat
[127] MachineFloat > Float from MachineFloat
[128] Expression(Integer) > Expression(MachineInteger) from
MachineInteger
[129] OutputForm > String from MathMLFormat
[130] Fraction(MyUnivariatePolynomial(D2,D3)) > MyExpression(D2,D3)
from MyExpression(D2,D3)
if D2: SYMBOL and D3 has Join(Ring,OrderedSet,
IntegralDomain)
[131] Polynomial(D3) > MyUnivariatePolynomial(D2,D3)
from MyUnivariatePolynomial(D2,D3) if D3 has RING and D2:
SYMBOL
[132] Variable(D2) > MyUnivariatePolynomial(D2,D3)
from MyUnivariatePolynomial(D2,D3) if D2: SYMBOL and D3
has RING
[133] D1 > MyUnivariatePolynomial(D2,D1) from
MyUnivariatePolynomial(D2,D1)
if D2: SYMBOL and D1 has RING
[134] Integer > D from D if D has NASRING
[135] Union(nia: Record(var: Symbol,fn: Expression(DoubleFloat),
range: Segment(OrderedCompletion(DoubleFloat)),abserr:
DoubleFloat,relerr: DoubleFloat),mdnia: Record(fn: Expression(
DoubleFloat),range: List(Segment(OrderedCompletion(DoubleFloat)))
,abserr: DoubleFloat,relerr: DoubleFloat)) >
NumericalIntegrationProblem
from NumericalIntegrationProblem
[136] Record(fn: Expression(DoubleFloat),range: List(Segment(
OrderedCompletion(DoubleFloat))),abserr: DoubleFloat,relerr:
DoubleFloat) > NumericalIntegrationProblem
from NumericalIntegrationProblem
[137] Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr:
DoubleFloat) > NumericalIntegrationProblem
from NumericalIntegrationProblem
[138] NumericalIntegrationProblem > OutputForm
from NumericalIntegrationProblem
[139] D2 > None from NoneFunctions1(D2) if D2 has TYPE
[140] Record(xinit: DoubleFloat,xend: DoubleFloat,fn: Vector(
Expression(DoubleFloat)),yinit: List(DoubleFloat),intvals: List(
DoubleFloat),g: Expression(DoubleFloat),abserr: DoubleFloat,
relerr: DoubleFloat) > NumericalODEProblem
from NumericalODEProblem
[141] NumericalODEProblem > OutputForm from NumericalODEProblem
[142] OrdinaryDifferentialRing(D2,D1,D3) > D1
from OrdinaryDifferentialRing(D2,D1,D3)
if D1 has PDRING(D2) and D2 has SETCAT and D3: D2
[143] D1 > OrdinaryDifferentialRing(D2,D1,D3)
from OrdinaryDifferentialRing(D2,D1,D3)
if D2 has SETCAT and D3: D2 and D1 has PDRING(D2)
[144] Symbol > OpenMathErrorKind from OpenMathErrorKind
[145] Union(noa: Record(fn: Expression(DoubleFloat),init: List(
DoubleFloat),lb: List(OrderedCompletion(DoubleFloat)),cf: List(
Expression(DoubleFloat)),ub: List(OrderedCompletion(DoubleFloat))
),lsa: Record(lfn: List(Expression(DoubleFloat)),init: List(
DoubleFloat))) > NumericalOptimizationProblem
from NumericalOptimizationProblem
[146] Record(lfn: List(Expression(DoubleFloat)),init: List(
DoubleFloat)) > NumericalOptimizationProblem
from NumericalOptimizationProblem
[147] Record(fn: Expression(DoubleFloat),init: List(DoubleFloat),lb
: List(OrderedCompletion(DoubleFloat)),cf: List(Expression(
DoubleFloat)),ub: List(OrderedCompletion(DoubleFloat))) >
NumericalOptimizationProblem
from NumericalOptimizationProblem
[148] NumericalOptimizationProblem > OutputForm
from NumericalOptimizationProblem
[149] Integer > OrdSetInts from OrdSetInts
[150] Color > Palette from Palette
[151] Polynomial(AlgebraicNumber) > Expression(Integer)
from PolynomialAN2Expression
[152] Fraction(Polynomial(AlgebraicNumber)) > Expression(Integer)
from PolynomialAN2Expression
[153] Record(pde: List(Expression(DoubleFloat)),constraints: List(
Record(start: DoubleFloat,finish: DoubleFloat,grid:
NonNegativeInteger,boundaryType: Integer,dStart: Matrix(
DoubleFloat),dFinish: Matrix(DoubleFloat))),f: List(List(
Expression(DoubleFloat))),st: String,tol: DoubleFloat) >
NumericalPDEProblem
from NumericalPDEProblem
[154] NumericalPDEProblem > OutputForm from NumericalPDEProblem
[155] PendantTree(D2) > Tree(D2) from PendantTree(D2) if D2 has
SETCAT
[156] List(Permutation(D2)) > PermutationGroup(D2) from
PermutationGroup(D2)
if D2 has SETCAT
[157] PermutationGroup(D2) > List(Permutation(D2)) from
PermutationGroup(D2)
if D2 has SETCAT
[158] List(D2) > Permutation(D2) from Permutation(D2) if D2 has
SETCAT
[159] List(List(D2)) > Permutation(D2) from Permutation(D2) if D2
has SETCAT
[160] Fraction(Factored(D2)) > PartialFraction(D2) from
PartialFraction(D2)
if D2 has EUCDOM
[161] PartialFraction(D2) > Fraction(D2) from PartialFraction(D2)
if D2 has EUCDOM
[162] Pi > Expression(D3) from PiCoercions(D3)
if D3 has Join(OrderedSet,IntegralDomain)
[163] List(D2) > D from D if D2 has FIELD and D has PRSPCAT(D2)
[164] D > List(D2) from D if D has PRSPCAT(D2) and D2 has FIELD
[165] Queue(D2) > OutputForm from Queue(D2) if D2 has SETCAT and D2
has SETCAT
[166] RadixExpansion(D2) > Fraction(Integer) from RadixExpansion(D2
) if D2: INT
[167] D2 > Void from ResolveLatticeCompletion(D2) if D2 has TYPE
[168] Exit > D1 from ResolveLatticeCompletion(D1) if D1 has TYPE
[169] D1 > D from D if D has RETRACT(D1) and D1 has TYPE
[170] D2 > Fraction(Polynomial(D2)) from RationalFunction(D2) if D2
has INTDOM
[171] Integer > D from D if D has RING
[172] SparseEchelonMatrix(D2,D3) > Matrix(D3) from
SparseEchelonMatrix(D2,D3)
if D2 has ORDSET and D3 has RING
[173] D > OutputForm from D if D has SPACEC(D2) and D2 has RING
[174] Character > D from D if D has SRAGG
[175] Stack(D2) > OutputForm from Stack(D2) if D2 has SETCAT and D2
has SETCAT
[176] List(D2) > Stream(D2) from Stream(D2) if D2 has TYPE
[177] Symbol > Switch from Switch
[178] String > Symbol from Symbol
[179] SymbolTable > Table(Symbol,FortranType) from SymbolTable
[180] Tableau(D2) > OutputForm from Tableau(D2) if D2 has SETCAT
[181] D2 > TexFormat from TexFormat1(D2) if D2 has SETCAT
[182] OutputForm > TexFormat from TexFormat
[183] Polynomial(D2) > TaylorSeries(D2) from TaylorSeries(D2) if D2
has RING
[184] Symbol > TaylorSeries(D2) from TaylorSeries(D2) if D2 has
RING
[185] Variable(QUOTE(x)) > UnivariateFormalPowerSeries(D2)
from UnivariateFormalPowerSeries(D2) if D2 has RING
[186] UnivariatePolynomial(QUOTE(x),D2) >
UnivariateFormalPowerSeries(D2)
from UnivariateFormalPowerSeries(D2) if D2 has RING
[187] D1 > D from D if D2 has RING and D has ULSCCAT(D2,D1) and D1
has UTSCAT(D2)
[188] Segment(D2) > UniversalSegment(D2) from UniversalSegment(D2)
if D2 has TYPE
[189] Variable(D2) > UnivariatePolynomial(D2,D3)
from UnivariatePolynomial(D2,D3) if D2: SYMBOL and D3 has
RING
[190] D1 > D from D if D2 has RING and D has UPXSCCA(D2,D1) and D1
has ULSCAT(D2)
[191] Variable(D3) > UnivariateTaylorSeriesCZero(D2,D3)
from UnivariateTaylorSeriesCZero(D2,D3) if D3: SYMBOL and
D2 has RING
[192] UnivariatePolynomial(D3,D2) > UnivariateTaylorSeriesCZero(D2,
D3)
from UnivariateTaylorSeriesCZero(D2,D3) if D2 has RING and
D3: SYMBOL
[193] Void > OutputForm from Void
[194] D1 > D from D if D has XALG(D1) and D1 has RING
[195] D1 > D from D if D has XFALG(D1,D2) and D1 has ORDSET and D2
has RING
There are 50 unexposed functions called coerce :
[1] Vector(Matrix(D3)) > Vector(Matrix(Fraction(Polynomial(D3))))
from CoerceVectorMatrixPackage(D3) if D3 has COMRING
[2] List(Integer) > ExtAlgBasis from ExtAlgBasis
[3] EuclideanModularRing(D2,D1,D3,D4,D5,D6) > D1
from EuclideanModularRing(D2,D1,D3,D4,D5,D6)
if D1 has UPOLYC(D2) and D2 has COMRING and D3 has ABELMON
and D4: ((D1,D3) > D1) and D5: ((D3,D3) > Union(D3,
"failed")) and D6: ((D1,D1,D3) > Union(D1,"failed"))
[4] UnivariatePuiseuxSeries(D3,D4,D5) > ExponentialExpansion(D2,D3,
D4,D5)
from ExponentialExpansion(D2,D3,D4,D5)
if D3 has Join(AlgebraicallyClosedField,
TranscendentalFunctionCategory,FunctionSpace(D2)) and D4:
SYMBOL and D5: D3 and D2 has Join(OrderedSet,RetractableTo(
Integer),LinearlyExplicitRingOver(Integer),GcdDomain)
[5] Vector(Fraction(Polynomial(D2))) > GenericNonAssociativeAlgebra
(D2,D3,D4,D5)
from GenericNonAssociativeAlgebra(D2,D3,D4,D5)
if D2 has COMRING and D5: VECTOR(MATRIX(D2)) and D3: PI
and D4: LIST(SYMBOL)
[6] List(List(Point(DoubleFloat))) > GraphImage from GraphImage
[7] GraphImage > OutputForm from GraphImage
[8] SparseMultivariatePolynomial(Integer,Kernel(InnerAlgebraicNumber
)) > InnerAlgebraicNumber
from InnerAlgebraicNumber
[9] LieExponentials(D2,D3,D4) > XPBWPolynomial(D2,D3)
from LieExponentials(D2,D3,D4)
if D2 has ORDSET and D3 has Join(CommutativeRing,Module(
Fraction(Integer))) and D4: PI
[10] LieExponentials(D2,D3,D4) > XDistributedPolynomial(D2,D3)
from LieExponentials(D2,D3,D4)
if D2 has ORDSET and D3 has Join(CommutativeRing,Module(
Fraction(Integer))) and D4: PI
[11] LyndonWord(D2) > Magma(D2) from LyndonWord(D2) if D2 has
ORDSET
[12] LyndonWord(D2) > OrderedFreeMonoid(D2) from LyndonWord(D2) if
D2 has ORDSET
[13] Magma(D2) > OrderedFreeMonoid(D2) from Magma(D2) if D2 has
ORDSET
[14] D1 > MakeCachableSet(D1) from MakeCachableSet(D1) if D1 has
SETCAT
[15] ModularField(D1,D2,D3,D4,D5) > D1 from ModularField(D1,D2,D3,
D4,D5)
if D1 has COMRING and D2 has ABELMON and D3: ((D1,D2) >
D1) and D4: ((D2,D2) > Union(D2,"failed")) and D5: ((D1,D1
,D2) > Union(D1,"failed"))
[16] D1 > ModMonic(D2,D1) from ModMonic(D2,D1)
if D2 has RING and D1 has UPOLYC(D2)
[17] ModuleMonomial(D2,D3,D4) > Record(index: D2,exponent: D3)
from ModuleMonomial(D2,D3,D4)
if D2 has ORDSET and D3 has SETCAT and D4: ((Record(index
: D2,exponent: D3),Record(index: D2,exponent: D3)) >
Boolean)
[18] Record(index: D2,exponent: D3) > ModuleMonomial(D2,D3,D4)
from ModuleMonomial(D2,D3,D4)
if D2 has ORDSET and D3 has SETCAT and D4: ((Record(index
: D2,exponent: D3),Record(index: D2,exponent: D3)) >
Boolean)
[19] ModularRing(D1,D2,D3,D4,D5) > D1 from ModularRing(D1,D2,D3,D4,
D5)
if D1 has COMRING and D2 has ABELMON and D3: ((D1,D2) >
D1) and D4: ((D2,D2) > Union(D2,"failed")) and D5: ((D1,D1
,D2) > Union(D1,"failed"))
[20] List(Record(coef: D2,monom: D3)) > MonoidRing(D2,D3)
from MonoidRing(D2,D3) if D2 has RING and D3 has MONOID
[21] Variable(D2) > UnivariateSkewPolynomial(D2,D3,D4,D5)
from UnivariateSkewPolynomial(D2,D3,D4,D5)
if D2: SYMBOL and D3 has RING and D4: AUTOMOR(D3) and D5:
(D3 > D3)
[22] Polynomial(D2) > OrdinaryWeightedPolynomials(D2,D3,D4,D5)
from OrdinaryWeightedPolynomials(D2,D3,D4,D5)
if D2 has RING and D3: LIST(SYMBOL) and D4: LIST(NNI) and
D5: NNI
[23] OrdinaryWeightedPolynomials(D2,D3,D4,D5) > Polynomial(D2)
from OrdinaryWeightedPolynomials(D2,D3,D4,D5)
if D2 has RING and D3: LIST(SYMBOL) and D4: LIST(NNI) and
D5: NNI
[24] D1 > PoincareBirkhoffWittLyndonBasis(D1)
from PoincareBirkhoffWittLyndonBasis(D1) if D1 has ORDSET
[25] PoincareBirkhoffWittLyndonBasis(D2) > OrderedFreeMonoid(D2)
from PoincareBirkhoffWittLyndonBasis(D2) if D2 has ORDSET
[26] Partition > List(Integer) from Partition
[27] D1 > ResidueRing(D2,D3,D4,D1,D5) from ResidueRing(D2,D3,D4,D1,
D5)
if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D1
has POLYCAT(D2,D3,D4) and D5: LIST(D1)
[28] RectangularMatrix(D2,D3,D4) > Matrix(D4)
from RectangularMatrix(D2,D3,D4) if D2: NNI and D3: NNI
and D4 has RING
[29] D1 > SparseMultivariateTaylorSeries(D2,D3,D1)
from SparseMultivariateTaylorSeries(D2,D3,D1)
if D2 has RING and D3 has ORDSET and D1 has POLYCAT(D2,
INDE(D3),D3)
[30] D1 > SparseMultivariateTaylorSeries(D2,D1,D3)
from SparseMultivariateTaylorSeries(D2,D1,D3)
if D2 has RING and D1 has ORDSET and D3 has POLYCAT(D2,
INDE(D1),D1)
[31] SquareMatrix(D2,D3) > Matrix(D3) from SquareMatrix(D2,D3)
if D2: NNI and D3 has RING
[32] D2 > Stream(D2) from StreamTaylorSeriesOperations(D2) if D2
has RING
[33] Variable(D3) > SparseUnivariateLaurentSeries(D2,D3,D4)
from SparseUnivariateLaurentSeries(D2,D3,D4)
if D3: SYMBOL and D2 has RING and D4: D2
[34] Variable(D3) > SparseUnivariatePuiseuxSeries(D2,D3,D4)
from SparseUnivariatePuiseuxSeries(D2,D3,D4)
if D3: SYMBOL and D2 has RING and D4: D2
[35] Variable(D3) > SparseUnivariateTaylorSeries(D2,D3,D4)
from SparseUnivariateTaylorSeries(D2,D3,D4)
if D3: SYMBOL and D2 has RING and D4: D2
[36] UnivariatePolynomial(D3,D2) > SparseUnivariateTaylorSeries(D2,
D3,D4)
from SparseUnivariateTaylorSeries(D2,D3,D4)
if D2 has RING and D3: SYMBOL and D4: D2
[37] PrimitiveArray(D2) > Tuple(D2) from Tuple(D2) if D2 has TYPE
[38] Variable(D3) > UnivariateLaurentSeries(D2,D3,D4)
from UnivariateLaurentSeries(D2,D3,D4)
if D3: SYMBOL and D2 has RING and D4: D2
[39] Variable(D3) > UnivariatePuiseuxSeries(D2,D3,D4)
from UnivariatePuiseuxSeries(D2,D3,D4)
if D3: SYMBOL and D2 has RING and D4: D2
[40] Variable(D3) > UnivariateTaylorSeries(D2,D3,D4)
from UnivariateTaylorSeries(D2,D3,D4)
if D3: SYMBOL and D2 has RING and D4: D2
[41] UnivariatePolynomial(D3,D2) > UnivariateTaylorSeries(D2,D3,D4)
from UnivariateTaylorSeries(D2,D3,D4)
if D2 has RING and D3: SYMBOL and D4: D2
[42] Variable(D2) > Symbol from Variable(D2) if D2: SYMBOL
[43] TwoDimensionalViewport > OutputForm from
TwoDimensionalViewport
[44] GraphImage > TwoDimensionalViewport from ViewportPackage
[45] D1 > WeightedPolynomials(D2,D3,D4,D1,D5,D6,D7)
from WeightedPolynomials(D2,D3,D4,D1,D5,D6,D7)
if D2 has RING and D3 has ORDSET and D4 has OAMONS and D5
: LIST(D3) and D1 has POLYCAT(D2,D4,D3) and D6: LIST(NNI)
and D7: NNI
[46] WeightedPolynomials(D2,D3,D4,D1,D5,D6,D7) > D1
from WeightedPolynomials(D2,D3,D4,D1,D5,D6,D7)
if D1 has POLYCAT(D2,D4,D3) and D2 has RING and D3 has
ORDSET and D4 has OAMONS and D5: LIST(D3) and D6: LIST(NNI)
and D7: NNI
[47] XPBWPolynomial(D2,D3) > XRecursivePolynomial(D2,D3)
from XPBWPolynomial(D2,D3) if D2 has ORDSET and D3 has
COMRING
[48] XPBWPolynomial(D2,D3) > XDistributedPolynomial(D2,D3)
from XPBWPolynomial(D2,D3) if D2 has ORDSET and D3 has
COMRING
[49] LiePolynomial(D2,D3) > XPBWPolynomial(D2,D3) from
XPBWPolynomial(D2,D3)
if D2 has ORDSET and D3 has COMRING
[50] D1 > XPolynomialRing(D2,D1) from XPolynomialRing(D2,D1)
if D2 has RING and D1 has ORDMON
Examples of coerce from AffineSpaceCategory
Examples of coerce from Algebra
Examples of coerce from AlgebraGivenByStructuralConstants
Examples of coerce from AlgebraicNumber
Examples of coerce from AnyFunctions1
Examples of coerce from Asp10
Examples of coerce from Asp19
Examples of coerce from Asp1
Examples of coerce from Asp20
Examples of coerce from Asp24
Examples of coerce from Asp31
Examples of coerce from Asp35
Examples of coerce from Asp41
Examples of coerce from Asp42
Examples of coerce from Asp49
Examples of coerce from Asp4
Examples of coerce from Asp50
Examples of coerce from Asp55
Examples of coerce from Asp6
Examples of coerce from Asp73
Examples of coerce from Asp74
Examples of coerce from Asp77
Examples of coerce from Asp78
Examples of coerce from Asp7
Examples of coerce from Asp80
Examples of coerce from Asp9
Examples of coerce from ArrayStack
a:ArrayStack INT:= arrayStack [1,2,3,4,5]
coerce a
Examples of coerce from BinaryExpansion
Examples of coerce from BlowUpMethodCategory
Examples of coerce from CartesianTensor
v:=[2,3]
tv:CartesianTensor(1,2,Integer):=v
tm:CartesianTensor(1,2,Integer):=[tv,tv]
v:=[2,3]
tv:CartesianTensor(1,2,Integer):=v
v:SquareMatrix(2,Integer):=[[1,2],[3,4]]
tv:CartesianTensor(1,2,Integer):=v
v:DirectProduct(2,Integer):=directProduct [3,4]
tv:CartesianTensor(1,2,Integer):=v
Examples of coerce from CoerceVectorMatrixPackage
Examples of coerce from Database
Examples of coerce from DecimalExpansion
Examples of coerce from Dequeue
a:Dequeue INT:= dequeue [1,2,3,4,5]
coerce a
Examples of coerce from DirichletRing
Examples of coerce from DataList
Examples of coerce from DrawNumericHack
Examples of coerce from DifferentialVariableCategory
Examples of coerce from ExtAlgBasis
Examples of coerce from EuclideanModularRing
Examples of coerce from ExponentialExpansion
Examples of coerce from FortranCode
Examples of coerce from FortranExpression
Examples of coerce from FiniteFieldHomomorphisms
Examples of coerce from FreeLieAlgebra
Examples of coerce from FortranMatrixCategory
Examples of coerce from FortranMatrixFunctionCategory
Examples of coerce from FileNameCategory
Examples of coerce from ScriptFormulaFormat1
Examples of coerce from ScriptFormulaFormat
Examples of coerce from FortranFunctionCategory
Examples of coerce from FortranProgram
Examples of coerce from FourierSeries
Examples of coerce from FunctionSpace
Examples of coerce from FortranScalarType
Examples of coerce from FortranType
Examples of coerce from FortranVectorCategory
Examples of coerce from FortranVectorFunctionCategory
Examples of coerce from GenericNonAssociativeAlgebra
Examples of coerce from GraphImage
Examples of coerce from GeneralUnivariatePowerSeries
Examples of coerce from Heap
a:Heap INT:= heap [1,2,3,4,5]
coerce a
Examples of coerce from HexadecimalExpansion
Examples of coerce from HTMLFormat
coerce(sqrt(3+x)::OutputForm)$HTMLFORM
Examples of coerce from InnerAlgebraicNumber
Examples of coerce from IndexCard
Examples of coerce from PolynomialIdeals
Examples of coerce from AssociatedJordanAlgebra
Examples of coerce from CoercibleTo
Examples of coerce from LeftAlgebra
Examples of coerce from LieExponentials
Examples of coerce from AssociatedLieAlgebra
Examples of coerce from LocalPowerSeriesCategory
Examples of coerce from LyndonWord
Examples of coerce from ThreeDimensionalMatrix
Examples of coerce from Magma
Examples of coerce from MappingPackage1
Examples of coerce from MatrixCategory
coerce([1,2,3])@Matrix(INT)
Examples of coerce from MachineComplex
Examples of coerce from MachineFloat
Examples of coerce from MachineInteger
Examples of coerce from MakeCachableSet
Examples of coerce from MathMLFormat
Examples of coerce from ModularField
Examples of coerce from ModMonic
Examples of coerce from ModuleMonomial
Examples of coerce from ModularRing
Examples of coerce from MonoidRing
Examples of coerce from MyExpression
Examples of coerce from MyUnivariatePolynomial
Examples of coerce from NonAssociativeRing
Examples of coerce from NumericalIntegrationProblem
Examples of coerce from NoneFunctions1
Examples of coerce from NumericalODEProblem
Examples of coerce from OrdinaryDifferentialRing
Examples of coerce from OpenMathErrorKind
Examples of coerce from NumericalOptimizationProblem
Examples of coerce from UnivariateSkewPolynomial
Examples of coerce from OrdSetInts
Examples of coerce from OrdinaryWeightedPolynomials
Examples of coerce from Palette
Examples of coerce from PolynomialAN2Expression
Examples of coerce from PoincareBirkhoffWittLyndonBasis
Examples of coerce from NumericalPDEProblem
Examples of coerce from PendantTree
t1:=ptree([1,2,3])
t2:=ptree(t1,ptree([1,2,3]))
t2::Tree List PositiveInteger
Examples of coerce from PermutationGroup
y : PERM INT := [[3,5,7,9]]
z : PERM INT := [1,3,11]
g : PERMGRP INT := [ y , z ]
x : PERM INT := [[1,3,5],[7,11,9]]
Examples of coerce from Permutation
Examples of coerce from PartialFraction
(13/74)::PFR(INT)
a:=(13/74)::PFR(INT)
a::FRAC(INT)
Examples of coerce from PiCoercions
Examples of coerce from ProjectiveSpaceCategory
Examples of coerce from Partition
Examples of coerce from Queue
a:Queue INT:= queue [1,2,3,4,5]
coerce a
Examples of coerce from RadixExpansion
Examples of coerce from ResolveLatticeCompletion
Examples of coerce from ResidueRing
Examples of coerce from RetractableTo
Examples of coerce from RationalFunction
Examples of coerce from Ring
Examples of coerce from RectangularMatrix
Examples of coerce from SparseEchelonMatrix
Examples of coerce from SparseMultivariateTaylorSeries
Examples of coerce from ThreeSpaceCategory
Examples of coerce from SquareMatrix
Examples of coerce from StringAggregate
Examples of coerce from Stack
a:Stack INT:= stack [1,2,3,4,5]
coerce a
Examples of coerce from Stream
m:=[1,2,3,4,5,6,7,8,9,10,11,12]
coerce(m)@Stream(Integer)
m::Stream(Integer)
Examples of coerce from StreamTaylorSeriesOperations
Examples of coerce from SparseUnivariateLaurentSeries
Examples of coerce from SparseUnivariatePuiseuxSeries
Examples of coerce from SparseUnivariateTaylorSeries
Examples of coerce from Switch
Examples of coerce from Symbol
Examples of coerce from SymbolTable
Examples of coerce from Tableau
Examples of coerce from TexFormat1
Examples of coerce from TexFormat
Examples of coerce from TaylorSeries
Examples of coerce from Tuple
t1:PrimitiveArray(Integer):= [i for i in 1..10]
t2:=coerce(t1)$Tuple(Integer)
Examples of coerce from UnivariateFormalPowerSeries
Examples of coerce from UnivariateLaurentSeriesConstructorCategory
Examples of coerce from UnivariateLaurentSeries
Examples of coerce from UniversalSegment
Examples of coerce from UnivariatePolynomial
Examples of coerce from UnivariatePuiseuxSeriesConstructorCategory
Examples of coerce from UnivariatePuiseuxSeries
Examples of coerce from UnivariateTaylorSeries
Examples of coerce from UnivariateTaylorSeriesCZero
Examples of coerce from Variable
Examples of coerce from TwoDimensionalViewport
Examples of coerce from ViewportPackage
Examples of coerce from Void
Examples of coerce from WeightedPolynomials
Examples of coerce from XAlgebra
Examples of coerce from XFreeAlgebra
Examples of coerce from XPBWPolynomial
Examples of coerce from XPolynomialRing
(1) >

books/bookvolbug.pamphlet  31 
changelog  3 +
patch  2105 ++++++++++++++++++++++
src/axiomwebsite/patches.html  2 +
src/interp/format.lisp.pamphlet  11 +
5 files changed, 1194 insertions(+), 958 deletions()
diff git a/books/bookvolbug.pamphlet b/books/bookvolbug.pamphlet
index 2b0a31d..78262b7 100644
 a/books/bookvolbug.pamphlet
+++ b/books/bookvolbug.pamphlet
@@ 45,37 +45,6 @@ The books/endpaper.pamphlet should be added to the Jenks book
\end{verbatim}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{bug 7237: coerce failure}
\begin{verbatim}

)d op coerce


There are 194 exposed functions called coerce :
 [1] List(D2) > D from D if D2 has FIELD and D has AFSPCAT(D2)
 [2] D > List(D2) from D if D has AFSPCAT(D2) and D2 has FIELD
 [3] D1 > D from D if D has ALGEBRA(D1) and D1 has COMRING

Daly Bug
 >> System error:
 D2 is not of type SEQUENCE.

 Continuing to read the file...

R
R
RThere are 194 exposed functions called coerce :
R [1] List D2 > D from D if D2 has FIELD and D has AFSPCAT D2
R [2] D > List D2 from D if D has AFSPCAT D2 and D2 has FIELD
R [3] D1 > D from D if D has ALGEBRA D1 and D1 has COMRING
R [4] Vector D2 > AlgebraGivenByStructuralConstants(D2,D3,D4,D5)
R from AlgebraGivenByStructuralConstants(D2,D3,D4,D5)
R if D2 has FIELD and D5: VECTOR MATRIX D2 and D3: PI and D4
R : LIST SYMBOL

\end{verbatim}

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{todo 334: eliminate bcString2HyString}
\begin{verbatim}
diff git a/changelog b/changelog
index 1fe3a4e..777f3d3 100644
 a/changelog
+++ b/changelog
@@ 1,3 +1,6 @@
+20160925 tpd src/axiomwebsite/patches.html 20160925.01.tpd.patch
+20160925 tpd books/bookvolbug bug 7237: coerce failure fixed
+20160925 tpd src/interp/format.lisp bug 7237: coerce failure fixed
20160918 tpd src/axiomwebsite/patches.html 20160918.01.tpd.patch
20160618 tpd books/bookvol0 fix bitrot of \matrix
20160618 tpd books/bookvol1 fix bitrot of \matrix
diff git a/patch b/patch
index f669520..bc4ec7b 100644
 a/patch
+++ b/patch
@@ 1,924 +1,1183 @@
books/bookvol10.5 add Sven Hammarling chapter

Goal: Axiom Literate Programming

Note that adding the Hammarling equations forced the addition of
mathtools.sty... which forced a new version of \matrix... which
forced a rewrite of several books. Code rot strikes. Sigh.

\index{Acton, F.S.}
\begin{chunk}{axiom.bib}
@book{Acto70,
 author = "Acton, F.S.",
 title = "Numerical Methods that (Usually) Work",
 year = "1970",
 publisher = "Harper and Row",
 address = "New York, USA"
}

\end{chunk}

\index{Acton, F.S.}
\begin{chunk}{axiom.bib}
@book{Acto96,
 author = "Acton, F.S.",
 title = "Real Computing Made Real: Preventing Errors in Scientific
 and Engineering Calculations",
 year = "1996",
 publisher = "Princeton University Press",
 address = "Princeton, N.J. USA",
 isbn = "0691036632"
}

\end{chunk}

\index{Alefeld, G.}
\index{Mayer, G.}
\begin{chunk}{axiom.bib}
@article{Alef00,
 author = "Alefeld, G. and Mayer, G.",
 title = "Interval analysis: Theory and applications",
 journal = "J. Comput. Appl. Math.",
 volume = "121",
 pages = "421464",
 year = "2000"
}

\end{chunk}

\index{Anderson, E.}
\index{Bai, Z.}
\index{Bischof, S.}
\index{Blackford, S.}
\index{Demmel, J.}
\index{Dongarra, J. J.}
\index{DuCroz, J.}
\index{Greenbaum, A.}
\index{Hammarling, S.}
\index{McKenney, A.}
\index{Sorensen, D. C.}
\begin{chunk}{axiom.bib}
@book{Ande99,
 author = "Anderson, E. and Bai, Z. and Bischof, S. and Blackford, S. and
 Demmel, J. and Dongarra, J. J. and DuCroz, J. and Greenbaum, A.
 and Hammarling, S. and McKenney, A. Sorensen, D. C.",
 title = "LAPACK Users' Guide",
 publisher = "SIAM",
 year = "1999",
 isbn = "0898714478",
 url = "www.netlib.org/lapack/lug/"
}

\end{chunk}

\index{Bindel, D.}
\index{Demmel, J.}
\index{Kahan, W.}
\index{Marques, O.}
\begin{chunk}{axiom.bib}
@article{Bind02,
 author = "Bindel, D. and Demmel, J. and Kahan, W. and Marques, O.",
 title = On computing Givens rotations reliably and efficiently",
 journal = "ACM Trans. Math. Software",
 volume = "28",
 pages = "206238",
 year = "2002"
}

\end{chunk}

\index{Blackford, L. S.}
\index{Cleary, A.}
\index{Demmel, J.}
\index{Dhillon, I.}
\index{Dongarra, J. J.}
\index{Hammarling, S.}
\index{Petitet, A.}
\index{Ren, H.}
\index{Stanley, K.}
\index{Whaley, R. C.}
\begin{chunk}{axiom.bib}
@article{Blac97,
 author = "Blackford, L. S. and Cleary, A. and Demmel, J. and Dhillon, I.
 and Dongarra, J. J. and Hammarling, S. and Petitet, A. and
 Ren, H. and Stanley, K. and Whaley, R. C.",
 title = "Practical experience in the numerical dangers of heterogeneous
 computing",
 journal = "ACM Trans. Math. Software",
 volume = "23",
 pages = "133147",
 year = "1997"
}

\end{chunk}

\index{Brankin, R. W.}
\index{Gladwell, I.}
\begin{chunk}{axiom.bib}
@article{Bran97,
 author = "Brankin, R. W. and Gladwell, I.",
 title = "rksuite\_90: Fortran 90 software for ordinary differential
 equation initialvalue problems",
 journal = "ACM Trans. Math. Software",
 volume = "23",
 pages = "402415",
 year = "1997"
}

\end{chunk}

\index{Brankin, R. W.}
\index{Gladwell, I.}
\index{Shampine, L. F.}
\begin{chunk}{axiom.bib}
@techreport{Bran92,
 author = "Brankin, R. W. and Gladwell, I. and Shampine, L. F.",
 title = "RKSUITE: A suite of rungekutta codes for the initial value
 problem for ODEs",
 year = "1992",
 institution = "Southern Methodist University, Dept of Math.",
 number = "Softreport 92S1",
 type = "Technical Report"
}

\end{chunk}

\index{Britton, J. L.}
\begin{chunk}{axiom.bib}
@book{Brit92,
 author = "Britton, J. L.",
 title = "Collected Works of A. M. Turing: Pure Mathematics",
 publisher = "NorthHolland",
 years = "1992",
 isbn = "0444880593"
}

\end{chunk}

\index{ChaitinChatelin, F.}
\index{Fraysse, V.}
\begin{chunk}{axiom.bib}
@book{Chai96,
 author = "ChaitinChatelin, F. and Fraysse, V.",
 title = "Lectures on Finite Precision Computations",
 publisher = "SIAM",
 year = "1996",
 isbn = "0898713587"
}

\end{chunk}

\index{Chan, T. F.}
\index{Golub, G. H.}
\index{LeVeque, R. J.}
\begin{chunk}{axiom.bib}
@article{Chan83,
 author = "Chan, T. F. and Golub, G. H. and LeVeque, R. J.",
 title = "Algorithms for computing the sample variance: Analysis and
 recommendations",
 journal = "The American Statistician",
 volume = "37",
 pages = "242247",
 year = "1983"
}

\end{chunk}

\index{Cools, R.}
\index{Haegemans, A.}
\begin{chunk}{axiom.bib}
@article{Cool03,
 author = "Cools, R. and Haegemans, A.",
 title = "Algorithm 824: CUBPACK: A package for automatic cubature;
 framework description",
 journal = "ACM Trans. Math. Software",
 volume = "29",
 pages = "287296",
 year = "2003"
}

\end{chunk}

\index{Cox, M. G.}
\index{Dainton, M. P.}
\index{Harris, P. M.}
\begin{chunk}{axiom.bib}
@techreport{Coxx00,
 author = "Cox, M. G. and Dainton, M. P. and Harris, P. M.",
 title = "Testing spreadsheets and other packages used in metrology:
 Testing functions for the calculation of standard deviation",
 year = "2000",
 institution = "National Physical Lab, Teddington, Middlesex UK",
 type = "Technical Report",
 number = "NPL Report CMSC07/00"
}

\end{chunk}

\index{Dodson, D. S.}
\begin{chunk}{axiom.bib}
@article{Dods83,
 author = "Dodson, D. S.",
 title = "Corrigendum: Remark on 'Algorithm 539: Basic Linear Algebra
 Subroutines for FORTRAN usage",
 journal = "ACM Trans. Math. Software",
 volume = "9",
 pages = "140",
 year = "1983"
}

\end{chunk}

\index{Dodson, D. S.}
\index{Grimes, R. G.}
\begin{chunk}{axiom.bib}
@article{Dods82,
 author = "Dodson, D. S. and Grimes, R. G.",
 title = "Remark on algorithm 539: Basic Linear Algebra Subprograms for
 Fortran usage",
 journal = "ACM Trans. Math. Software",
 volume = "8",
 pages = "403404",
 year = "1982"
}

\end{chunk}

\index{Dongarra, J. J.}
\index{DuCroz, J.}
\index{Hammarling, S.}
\index{Hanson, R. J.}
\begin{chunk}{axiom.bib}
@article{Dong88,
 author = "Dongarra, J. J. and DuCroz, J. and Hammarling, S. and
 Hanson, R. J.",
 title = "An extended set of FORTRAN Basic Linear Algebra Subprograms",
 journal = "ACM Trans. Math. Software",
 volume = "14",
 pages = "132",
 year = "1988"
}

\end{chunk}

\index{Dongarra, J.}
\index{DuCroz, J.}
\index{Duff, I. S.}
\index{Hammarling, S.}
\begin{chunk}{axiom.bib}
@article{Dong90,
 author = "Dongarra, J. and DuCroz, J. and Duff, I. S. and Hammarling, S.",
 title = "A set of Level 3 Basic Linear Algebra Subprograms",
 journal = "ACM Trans. Math. Software",
 volume = "16",
 pages = "128",
 year = "1990"
}

\end{chunk}

\index{Dubrulle, A. A.}
\begin{chunk}{axiom.bib}
@article{Dubr83,
 author = "Dubrulle, A. A.",
 title = "A class of numerical methods for the computation of Pythagorean
 sums",
 journal = "IBM J. Res. Develop.",
 volume = "27",
 number = "6",
 pages = "582589",
 year = "1983"
}

\end{chunk}

\index{Einarsson, B.}
\begin{chunk}{axiom.bib}
@book{Eina05,
 author = "Einarsson, B.",
 title = "Accuracy and Reliability in Scientific Computing",
 publisher = "SIAM",
 year = "2005",
 isbn = "0898715849",
 url = "http://www.nsc.liu.se/wg25/book/"
}

\end{chunk}

\index{Forsythe, G. E.}
\begin{chunk}{axiom.bib}
@article{Fors70,
 author = "Forsythe, G. E.",
 title = "Pitfalls in computations, or why a math book isn't enough",
 journal = "Amer. Math. Monthly",
 volume = "9",
 pages = "931995",
 year = "1970"
}

\end{chunk}

\index{Forsythe, G. E.}
\begin{chunk}{axiom.bib}
@incollection{Fors69,
 author = "Forsythe, G. E.",
 title = "What is a satisfactory quadratic equation solver",
 booktitle = "Constructive Aspects of the Fundamental Theorem of Algebra",
 pages = "5361",
 publisher = "Wiley",
 year = "1969"
}

\end{chunk}

\index{Fox, L.}
\begin{chunk}{axiom.bib}
@article{Foxx71,
 author = "Fox, L.",
 title = "How to get meaningless answers in scientific computations (and
 what to do about it)",
 journal = "IMA Bulletin",
 volume = "7",
 pages = "296302",
 year = "1971"
}

\end{chunk}

\index{Givens, W.}
\begin{chunk}{axiom.bib}
@techreport{Give54,
 author = "Givens, W.",
 title = "Numerical computation of the characteristic values of a real
 symmetric matrix",
 year = "1954",
 institution = "Oak Ridge National Laboratory",
 type = "Technical Report",
 number = "ORNL1574"
}

\end{chunk}

\index{Golub, G.H.}
\begin{chunk}{axiom.bib}
@article{Golu65,
 author = "Golub, G.H.",
 title = "Numerical methods for solving linear least squares problems",
 journal = "Numer. Math.",
 volume = "7",
 pages = "206216",
 year = "1965"
}

\end{chunk}

\index{Golub, Gene H.}
\index{Van Loan, Charles F.}
\begin{chunk}{axiom.bib}
@book{Golu89,
 author = "Golub, Gene H. and Van Loan, Charles F.",
 title = "Matrix Computations",
 publisher = "Johns Hopkins University Press",
 year = "1989",
 isbn = "0801837723"
}

\end{chunk}

\index{Golub, Gene H.}
\index{Van Loan, Charles F.}
\begin{chunk}{axiom.bib}
@book{Golu96,
 author = "Golub, Gene H. and Van Loan, Charles F.",
 title = "Matrix Computations",
 publisher = "Johns Hopkins University Press",
 isbn = "9780801854149",
 year = "1996"
}

\end{chunk}

\index{Hammarling S.}
\begin{chunk}{axiom.bib}
@article{Hamm85,
 author = "Hammarling S.",
 title = " The Singular Value Decomposition in Multivariate Statistics",
 journal = "ACM Signum Newsletter",
 volume = "20",
 number = "3",
 pages = "225",
 year = "1985"
}

\end{chunk}

\index{Hammarling, Sven}
\begin{chunk}{axiom.bib}
@book{Hamm05,
 author = "Hammarling, Sven",
 title = "An Introduction to the Quality of Computed Solutions",
 booktitle = "Accuracy and Reliability in Scientific Computing",
 year = "2005",
 publisher = "SIAM",
 pages = "4376",
 url = "http://eprints.ma.man.ac.uk/101/",
 paper = "Hamm05.pdf"
}

\end{chunk}

\index{Hargreaves, G.}
\begin{chunk}{axiom.bib}
@mastersthesis{Harg02,
 author = "Hargreaves, G.",
 title = "Interval analysis in MATLAB",
 school = "University of Manchester, Dept. of Mathematics",
 year = "2002"
}

\end{chunk}

\index{Higham, Nicholas J.}
\begin{chunk}{axiom.bib}
@book{High02,
 author = "Higham, Nicholas J.",
 title = "Accuracy and stability of numerical algorithms",
 publisher = "SIAM",
 isbn = "0898715210",
 year = "2002"
}

\end{chunk}

\index{Higham, Nicholas J.}
\begin{chunk}{axiom.bib}
@article{High88,
 author = "Higham, Nicholas J.",
 title = "FORTRAN codes for estimating the onenorm of a real or complex
 matrix, with applications to condition estimation",
 journal = "ACM Trans. Math. Soft",
 volume = "14",
 number = "4",
 pages = "381396",
 year = "1988"
}

\end{chunk}

\begin{chunk}{axiom.bib}
@misc{IEEE85,
 author = "IEEE",
 title = "ANSI/IEEE Standard for Binary Floating Point Arithmetic:
 Std 7541985",
 publisher = "IEEE Press",
 year = "1985"
}

\end{chunk}

\begin{chunk}{axiom.bib}
@misc{IEEE87,
 author = "IEEE",
 title = "ANSI/IEEE Standard for Radix Independent Floating Point Arithmetic:
 Std 8541987",
 publisher = "IEEE Press",
 year = "1987"
}

\end{chunk}

\index{Kn\"usel, L.}
\begin{chunk}{axiom.bib}
@article{Knus98,
 author = {Kn\"usel, L.},
 title = "On the accuracy of statistical distributions in Microsoft
 Excel 97",
 journal = "Comput. Statist. Data Anal.",
 volume = "26",
 pages = "375377",
 year = "1998"
}

\end{chunk}

\index{Kreinovich, V.}
\begin{chunk}{axiom.bib}
@misc{Krei05,
 author = "Kreinovich, V.",
 title = "Interval cmoputations",
 year = "2005",
 url = "http://www.cs.utep.edu/intervalcomp/"
}

\end{chunk}

\index{Lawson, C. L.}
\index{Hanson, R. J.}
\begin{chunk}{axiom.bib}
@book{Laws75,
 author = "Lawson, C. L. and Hanson, R. J.",
 title = "Solving Least Squares Problems",
 publisher = "PrenticeHall",
 year = "1974"
}

\end{chunk}

\index{Lawson, C. L.}
\index{Hanson, R. J.}
\begin{chunk}{axiom.bib}
@book{Laws95,
 author = "Lawson, C. L. and Hanson, R. J.",
 title = "Solving Least Squares Problems",
 publisher = "SIAM",
 isbn = "0898713560",
 year = "1995"
}

\end{chunk}

\index{Lawson, C. L.}
\index{Hanson, R. J.}
\index{Kincaid, D.}
\index{Krogh, F. T.}
\begin{chunk}{axiom.bib}
@article{Laws79,
 author = "Lawson, C. L. and Hanson, R. J. and Kincaid, D. and Krogh, F. T.",
 title = "Basic Linear Algebra Subprograms for FORTRAN usage",
 journal = "ACM Trans. Math. Software",
 volume = "5",
 pages = "308323",
 year = "1979"
}

\end{chunk}

\index{Martin, R. S.}
\index{Wilkinson, J. H.}
\begin{chunk}{axiom.bib}
@article{Mart68,
 author = "Martin, R. S. and Wilkinson, J. H.",
 title = "Similarity reduction ofa general matrix to Hessenberg form",
 journal = "Numer. Math.",
 volume = "12",
 pages = "349368",
 year = "1968"
}

\end{chunk}

\begin{chunk}{axiom.bib}
@misc{Math05,
 author = "MathWorks",
 title = "MATLAB",
 publisher = "The Mathworks, Inc.",
 url = "http://www.mathworks.com"
}

\end{chunk}

\index{McCullough, B. D.}
\index{Wilson, B.}
\begin{chunk}{axiom.bib}
@article{Mccu02,
 author = "McCullough, B. D. and Wilson, B.",
 title = "On the accuracy of statistical procedures in Microsoft Excel
 2000 and Excel XP",
 journal = "Comput. Statist. Data Anal.",
 volume = "40",
 pages = "713721",
 year = "2002"
}

\end{chunk}

\index{McCullough, B. D.}
\index{Wilson, B.}
\begin{chunk}{axiom.bib}
@article{Mccu99,
 author = "McCullough, B. D. and Wilson, B.",
 title = "On the accuracy of statistical procedures in Microsoft Excel 97",
 journal = "Comput. Statist. Data Anal.",
 volume = "31",
 pages = "2737",
 year = "1999"
}

\end{chunk}

\index{Metcalf, M.}
\index{Reid, J. K.}
\begin{chunk}{axiom.bib}
@book{Metc96,
 author = "Metcalf, M. and Reid, J. K.",
 title = "Fortran 90/95 Explained",
 publisher = "Oxford University Press",
 year = "1996"
}

\end{chunk}

\index{Metcalf, M.}
\index{Reid, J. K.}
\index{Cohen, M.}
\begin{chunk}{axiom.bib}
@book{Metc04,
 author = "Metcalf, M. and Reid, J. K. and Cohen, M.",
 title = "Fortran 95/2003 Explained",
 publisher = "Oxford University Press",
 year = "2004",
 isbn = "0198526938"
}

\end{chunk}

\index{Moler, C.}
\index{Morrison, D.}
\begin{chunk}{axiom.bib}
@article{Mole83,
 author = "Moler, C. and Morrison, D.",
 title = "Replacing square roots by Pythagorena sums",
 journal = "IBM J. Res. Develop.",
 volume = "27",
 number = "6",
 pages = "577581",
 year = "1983"
}

\end{chunk}

\index{Moore, R. E.}
\begin{chunk}{axiom.bib}
@books{Moor79,
 author = "Moore, R. E.",
 title = "methods and Applications of Interval Analysis",
 publisher = "SIAM",
 year = "1979"
}

\end{chunk}

\begin{chunk}{axiom.bib}
@misc{NAGa05,
 author = "Numerical Algorithms Group",
 title = "The NAG Library",
 url = "http://www.nag.co.uk/numeric",
 year = "2005"
}

\end{chunk}

\begin{chunk}{axiom.bib}
@misc{NAGb05,
 author = "Numerical Algorithms Group",
 title = "The NAG Fortran Library Manual",
 url = "http://www.nag.co.uk/numeric/fl/manual/html/FLlibrarymanual.asp",
 year = "2005"
}

\end{chunk}

\index{Overton, M. L.}
\begin{chunk}{axiom.bib}
@book{Over01,
 author = "Overton, M. L.",
 title = "Numerical Computing with IEEE Floating Point Arithmetic",
 publisher = "SIAM",
 year = "2001",
 isbn = "0898714826"
}

\end{chunk}

\index{Piessens, R.}
\index{de DonckerKapenga, E.},
\index{\"Uberhuber, C. W.}
\index{Kahaner, D. K.}
\begin{chunk}{axiom.bib}
@book{Pies83,
 author = {Piessens, R. and de DonckerKapenga, E. and \"Uberhuber, C. W.
 and Kahaner, D. K.},
 title = "QUADPACK  A Subroutine Package for Automatic Integration",
 publisher = "SpringerVerlag",
 year = "1983"
}

\end{chunk}

\index{Priest, D. M.}
\begin{chunk}{axiom.bib}
@article{Prie04,
 author = "Priest, D. M.",
 title = "Efficient scaling for complex division",
 journal = "ACM Trans. Math. Software",
 volume = "30",
 pages = "389401",
 year = "2004"
}

\end{chunk}

\index{Rump, S. M.}
\begin{chunk}{axiom.bib}
@InProceedings{Rump99,
 author = "Rump, S. M.",
 title = "INTLAB  INTerval LABoratory",
 booktitle = "Developments in Reliable Computing",
 pages = "77104",
 publisher = "Kluwer Academic",
 year = "1999"
}

\end{chunk}

\index{Shampine, L. F.}
\index{Gladwell, I.}
\begin{chunk}{axiom.bib}
@InProceedings{Sham92,
 author = "Shampine, L. F. and Gladwell, I.",
 title = "The next generation of rungekutta codes",
 booktitle = "Computational Ordinary Differential Equations",
 pages = "145164",
 publisher = "Oxford University Press",
 year = "1992"
}

\end{chunk}

\index{Smith, R. L.}
\begin{chunk}{axiom.bib}
@article{Smit62,
 author = "Smith, R. L.",
 title = "Algorithm 116: Complex division",
 journal = "Communs. Ass. comput. Mach.",
 volume = "5",
 pages = "435",
 year = "1962"
}

\end{chunk}

\index{Stewart, G. W.}
\begin{chunk}{axiom.bib}
@book{Stew98,
 author = "Stewart, G. W.",
 title = "Matrix Algorithms: Basic Decompositions, volume I",
 publisher = "SIAM",
 year = "1998",
 isbn = "0898714141"
}

\end{chunk}

\index{Stewart, G. W.}
\begin{chunk}{axiom.bib}
@article{Stew85,
 author = "Stewart, G. W.",
 title = "A note on complex division",
 journal = "ACM Trans. Math. Software",
 volume = "11",
 pages = "238241",
 year = "1985"
}

\end{chunk}

\index{Stewart, G. W.}
\index{Sun, J.}
\begin{chunk}{axiom.bib}
@book{Stew90,
 author = "Stewart, G. W. and Sun, J.",
 title = "Matrix Perturbation Theory",
 publisher = "Academic Press",
 year = "1990"
}

\end{chunk}

\index{Turing, A. M.}
\begin{chunk}{axiom.bib}
@article{Turi48,
 author = "Turing, A. M.",
 title = "Roundingoff errors in matrix processes",
 journal = "Q. J. Mech. Appl. Math.",
 volume = "1",
 pages = "287308",
 year = "1948"
}

\end{chunk}

\index{Vignes, J.}
\begin{chunk}{axiom.bib}
@article{Vign93,
 author = "Vignes, J.",
 title = "A stochastic arithmetic for reliable scientific computation",
 jouirnal = "Math. and Comp. in Sim.",
 volume = "25",
 pages = "233261",
 year = "1993"
}

\end{chunk}

\index{Wilkinson, J. H.}
\begin{chunk}{axiom.bib}
@book{Wilk63,
 author = "Wilkinson, J. H.",
 title = "Rounding Erroors in Algebraic Processes",
 publisher = "HMSO",
 series = "Notes on Applied Science, No. 32",
 year = "1963"
}

\end{chunk}

\index{Wilkinson, J. H.}
\begin{chunk}{axiom.bib}
@book{Wilk65,
 author = "Wilkinson, J. H.",
 title = "The Algebraic Eigenvalue Problem",
 publisher = "Oxford University Press",
 year = "1965"
}

\end{chunk}

\index{Wilkinson, J. H.}
\begin{chunk}{axiom.bib}
@InProceedings{Wilk84,
 author = "Wilkinson, J. H.",
 title = "The perfidious polynomial",
 booktitle = "Studies in Numerical Analysis",
 volume = "24",
 chapter = "1",
 pages = "128",
 year = "1984"
}

\end{chunk}

\index{Wilkinson, J. H.}
\begin{chunk}{axiom.bib}
@article{Wilk86,
 author = "Wilkinson, J. H.",
 title = "Error analysis revisited",
 journal = "IMA Bulletin",
 volume = "22",
 pages = "192200",
 year = "1986"
}

\end{chunk}

\index{Wilkinson, J. H.}
\begin{chunk}{axiom.bib}
@article{Wilk61,
 author = "Wilkinson, J. H.",
 title = "Error analysis of diret methods of matrix inversion",
 journal = "J. ACM",
 volume = "8",
 pages = "281330",
 year = "1961"
}

\end{chunk}

\index{Wilkinson, J. H.}
\begin{chunk}{axiom.bib}
@article{Wilk85,
 author = "Wilkinson, J. H.",
 title = "The state of the art in error analysis",
 journal = "NAG Newsletter",
 volume = "2/85",
 pages = "528",
 year = "1985"
}

\end{chunk}

\index{Wilkinson, J. H.}
\begin{chunk}{axiom.bib}
@article{Wilk60,
 author = "Wilkinson, J. H.",
 title = "Error analysis of floatingpoint computation",
 journal = "Numer. Math.",
 volume = "2",
 pages = "319340",
 year = "1960"
}

\end{chunk}

\index{Wilkinson, J. H.}
\index{Reinsch, C.}
\begin{chunk}{axiom.bib}
@book{Wilk71,
 author = "Wilkinson, J. H.",
 title = "Handbook for Automatic Computation, V2, Linear Algebra",
 publisher = "SpringerVerlag",
 year = "1971"
}

\end{chunk}
+src/interp/format.lisp bug 7237: coerce failure fixed
+
+Goal: Axiom Maintenance
+
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+\subsection{bug 7237: coerce failure}
+\begin{verbatim}
+
+)d op coerce
+
+
+There are 194 exposed functions called coerce :
+ [1] List(D2) > D from D if D2 has FIELD and D has AFSPCAT(D2)
+ [2] D > List(D2) from D if D has AFSPCAT(D2) and D2 has FIELD
+ [3] D1 > D from D if D has ALGEBRA(D1) and D1 has COMRING
+
+Daly Bug
+ >> System error:
+ D2 is not of type SEQUENCE.
+
+ Continuing to read the file...
+
+R
+R
+RThere are 194 exposed functions called coerce :
+R [1] List D2 > D from D if D2 has FIELD and D has AFSPCAT D2
+R [2] D > List D2 from D if D has AFSPCAT D2 and D2 has FIELD
+R [3] D1 > D from D if D has ALGEBRA D1 and D1 has COMRING
+R [4] Vector D2 > AlgebraGivenByStructuralConstants(D2,D3,D4,D5)
+R from AlgebraGivenByStructuralConstants(D2,D3,D4,D5)
+R if D2 has FIELD and D5: VECTOR MATRIX D2 and D3: PI and D4
+R : LIST SYMBOL
+
+\end{verbatim}
+
+Now reads:
+
+(1) > )d op coerce
+
+There are 195 exposed functions called coerce :
+ [1] List(D2) > D from D if D2 has FIELD and D has AFSPCAT(D2)
+ [2] D > List(D2) from D if D has AFSPCAT(D2) and D2 has FIELD
+ [3] D1 > D from D if D has ALGEBRA(D1) and D1 has COMRING
+ [4] Vector(D2) > AlgebraGivenByStructuralConstants(D2,D3,D4,D5)
+ from AlgebraGivenByStructuralConstants(D2,D3,D4,D5)
+ if D2 has FIELD and D5: VECTOR(MATRIX(D2)) and D3: PI and
+ D4: LIST(SYMBOL)
+ [5] SparseMultivariatePolynomial(Integer,Kernel(AlgebraicNumber))
+ > AlgebraicNumber
+ from AlgebraicNumber
+ [6] D2 > Any from AnyFunctions1(D2) if D2 has TYPE
+ [7] Vector(FortranExpression([construct,QUOTEJINT,QUOTEX,QUOTEELAM],
+ [construct],MachineFloat)) > Asp10(D2)
+ from Asp10(D2) if D2: SYMBOL
+ [8] Vector(FortranExpression([construct],[construct,QUOTEXC],
+ MachineFloat)) > Asp19(D2)
+ from Asp19(D2) if D2: SYMBOL
+ [9] FortranExpression([construct,QUOTEX],[construct],MachineFloat)
+ > Asp1(D2)
+ from Asp1(D2) if D2: SYMBOL
+ [10] Matrix(FortranExpression([construct],[construct,QUOTEX,QUOTE
+ HESS],MachineFloat)) > Asp20(D2)
+ from Asp20(D2) if D2: SYMBOL
+ [11] FortranExpression([construct],[construct,QUOTEXC],MachineFloat)
+ > Asp24(D2)
+ from Asp24(D2) if D2: SYMBOL
+ [12] Vector(FortranExpression([construct,QUOTEX],[construct,QUOTEY],
+ MachineFloat)) > Asp31(D2)
+ from Asp31(D2) if D2: SYMBOL
+ [13] Vector(FortranExpression([construct],[construct,QUOTEX],
+ MachineFloat)) > Asp35(D2)
+ from Asp35(D2) if D2: SYMBOL
+ [14] Vector(FortranExpression([construct,QUOTEX,QUOTEEPS],[construct
+ ,QUOTEY],MachineFloat)) > Asp41(D2,D3,D4)
+ from Asp41(D2,D3,D4) if D2: SYMBOL and D3: SYMBOL and D4:
+ SYMBOL
+ [15] Vector(FortranExpression([construct,QUOTEEPS],[construct,QUOTE
+ YA,QUOTEYB],MachineFloat)) > Asp42(D2,D3,D4)
+ from Asp42(D2,D3,D4) if D2: SYMBOL and D3: SYMBOL and D4:
+ SYMBOL
+ [16] FortranExpression([construct],[construct,QUOTEX],MachineFloat)
+ > Asp49(D2)
+ from Asp49(D2) if D2: SYMBOL
+ [17] FortranExpression([construct],[construct,QUOTEX],MachineFloat)
+ > Asp4(D2)
+ from Asp4(D2) if D2: SYMBOL
+ [18] Vector(FortranExpression([construct],[construct,QUOTEXC],
+ MachineFloat)) > Asp50(D2)
+ from Asp50(D2) if D2: SYMBOL
+ [19] Vector(FortranExpression([construct],[construct,QUOTEX],
+ MachineFloat)) > Asp55(D2)
+ from Asp55(D2) if D2: SYMBOL
+ [20] Vector(FortranExpression([construct],[construct,QUOTEX],
+ MachineFloat)) > Asp6(D2)
+ from Asp6(D2) if D2: SYMBOL
+ [21] Vector(FortranExpression([construct,QUOTEX,QUOTEY],[construct],
+ MachineFloat)) > Asp73(D2)
+ from Asp73(D2) if D2: SYMBOL
+ [22] Matrix(FortranExpression([construct,QUOTEX,QUOTEY],[construct],
+ MachineFloat)) > Asp74(D2)
+ from Asp74(D2) if D2: SYMBOL
+ [23] Matrix(FortranExpression([construct,QUOTEX],[construct],
+ MachineFloat)) > Asp77(D2)
+ from Asp77(D2) if D2: SYMBOL
+ [24] Vector(FortranExpression([construct,QUOTEX],[construct],
+ MachineFloat)) > Asp78(D2)
+ from Asp78(D2) if D2: SYMBOL
+ [25] Vector(FortranExpression([construct,QUOTEX],[construct,QUOTEY],
+ MachineFloat)) > Asp7(D2)
+ from Asp7(D2) if D2: SYMBOL
+ [26] Matrix(FortranExpression([construct,QUOTEXL,QUOTEXR,QUOTEELAM],
+ [construct],MachineFloat)) > Asp80(D2)
+ from Asp80(D2) if D2: SYMBOL
+ [27] FortranExpression([construct,QUOTEX],[construct,QUOTEY],
+ MachineFloat) > Asp9(D2)
+ from Asp9(D2) if D2: SYMBOL
+ [28] ArrayStack(D2) > OutputForm from ArrayStack(D2)
+ if D2 has SETCAT and D2 has SETCAT
+ [29] BinaryExpansion > RadixExpansion(2) from BinaryExpansion
+ [30] BinaryExpansion > Fraction(Integer) from BinaryExpansion
+ [31] List(Integer) > D from D if D has BLMETCT
+ [32] List(CartesianTensor(D2,D3,D4)) > CartesianTensor(D2,D3,D4)
+ from CartesianTensor(D2,D3,D4) if D2: INT and D3: NNI and
+ D4 has COMRING
+ [33] List(D4) > CartesianTensor(D2,D3,D4) from CartesianTensor(D2,
+ D3,D4)
+ if D4 has COMRING and D2: INT and D3: NNI
+ [34] SquareMatrix(D3,D4) > CartesianTensor(D2,D3,D4)
+ from CartesianTensor(D2,D3,D4) if D3: NNI and D4 has
+ COMRING and D2: INT
+ [35] DirectProduct(D3,D4) > CartesianTensor(D2,D3,D4)
+ from CartesianTensor(D2,D3,D4) if D3: NNI and D4 has
+ COMRING and D2: INT
+ [36] List(D2) > Database(D2) from Database(D2)
+ if D2 has OrderedSetwith
+ ?.? : (%,Symbol) > String
+ display : % > Void
+ fullDisplay : % > Void
+ [37] DecimalExpansion > RadixExpansion(10) from DecimalExpansion
+
+ [38] DecimalExpansion > Fraction(Integer) from DecimalExpansion
+ [39] Dequeue(D2) > OutputForm from Dequeue(D2) if D2 has SETCAT and
+ D2 has SETCAT
+ [40] DirichletRing(D2) > Stream(D2) from DirichletRing(D2) if D2
+ has RING
+ [41] Stream(D2) > DirichletRing(D2) from DirichletRing(D2) if D2
+ has RING
+ [42] DirichletRing(D2) > (PositiveInteger > D2) from DirichletRing
+ (D2)
+ if D2 has RING
+ [43] (PositiveInteger > D2) > DirichletRing(D2) from DirichletRing
+ (D2)
+ if D2 has RING
+ [44] DataList(D2) > List(D2) from DataList(D2) if D2 has ORDSET
+ [45] List(D2) > DataList(D2) from DataList(D2) if D2 has ORDSET
+ [46] SegmentBinding(Expression(D3)) > SegmentBinding(Float)
+ from DrawNumericHack(D3)
+ if D3 has Join(OrderedSet,IntegralDomain,ConvertibleTo(
+ Float))
+ [47] D1 > D from D if D has DVARCAT(D1) and D1 has ORDSET
+ [48] FortranCode > OutputForm from FortranCode
+ [49] FortranExpression(D2,D3,D4) > Expression(D4)
+ from FortranExpression(D2,D3,D4)
+ if D2: LIST(SYMBOL) and D3: LIST(SYMBOL) and D4 has FMTC
+
+ [50] D2 > D1 from FiniteFieldHomomorphisms(D2,D3,D1)
+ if D3 has FFIELDC and D1 has FAXF(D3) and D2 has FAXF(D3)
+
+ [51] D2 > D1 from FiniteFieldHomomorphisms(D1,D3,D2)
+ if D3 has FFIELDC and D1 has FAXF(D3) and D2 has FAXF(D3)
+
+ [52] D > XRecursivePolynomial(D2,D3) from D
+ if D has FLALG(D2,D3) and D2 has ORDSET and D3 has COMRING
+
+ [53] D > XDistributedPolynomial(D2,D3) from D
+ if D has FLALG(D2,D3) and D2 has ORDSET and D3 has COMRING
+
+ [54] D1 > D from D if D has FLALG(D1,D2) and D1 has ORDSET and D2
+ has COMRING
+ [55] Record(localSymbols: SymbolTable,code: List(FortranCode)) > D
+ from D
+ if D has FMC
+ [56] FortranCode > D from D if D has FMC
+ [57] List(FortranCode) > D from D if D has FMC
+ [58] Matrix(MachineFloat) > D from D if D has FMC
+ [59] Record(localSymbols: SymbolTable,code: List(FortranCode)) > D
+ from D
+ if D has FMFUN
+ [60] FortranCode > D from D if D has FMFUN
+ [61] List(FortranCode) > D from D if D has FMFUN
+ [62] D > String from D if D has FNCAT
+ [63] String > D from D if D has FNCAT
+ [64] D2 > ScriptFormulaFormat from ScriptFormulaFormat1(D2) if D2
+ has SETCAT
+ [65] OutputForm > ScriptFormulaFormat from ScriptFormulaFormat
+ [66] Record(localSymbols: SymbolTable,code: List(FortranCode)) > D
+ from D
+ if D has FORTFN
+ [67] FortranCode > D from D if D has FORTFN
+ [68] List(FortranCode) > D from D if D has FORTFN
+ [69] Equation(Expression(Complex(Float))) > FortranProgram(D2,D3,D4
+ ,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [70] Equation(Expression(Float)) > FortranProgram(D2,D3,D4,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [71] Equation(Expression(Integer)) > FortranProgram(D2,D3,D4,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [72] Expression(Complex(Float)) > FortranProgram(D2,D3,D4,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [73] Expression(Float) > FortranProgram(D2,D3,D4,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [74] Expression(Integer) > FortranProgram(D2,D3,D4,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [75] Equation(Expression(MachineComplex)) > FortranProgram(D2,D3,D4
+ ,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [76] Equation(Expression(MachineFloat)) > FortranProgram(D2,D3,D4,
+ D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [77] Equation(Expression(MachineInteger)) > FortranProgram(D2,D3,D4
+ ,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [78] Expression(MachineComplex) > FortranProgram(D2,D3,D4,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [79] Expression(MachineFloat) > FortranProgram(D2,D3,D4,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [80] Expression(MachineInteger) > FortranProgram(D2,D3,D4,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [81] Record(localSymbols: SymbolTable,code: List(FortranCode)) >
+ FortranProgram(D2,D3,D4,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [82] List(FortranCode) > FortranProgram(D2,D3,D4,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [83] FortranCode > FortranProgram(D2,D3,D4,D5)
+ from FortranProgram(D2,D3,D4,D5)
+ if D2: SYMBOL and D3: Union(fst: FortranScalarType,void:
+ void) and D4: LIST(SYMBOL) and D5: SYMTAB
+ [84] FourierComponent(D3) > FourierSeries(D2,D3) from FourierSeries
+ (D2,D3)
+ if D3 has Join(OrderedSet,AbelianGroup) and D2 has Join(
+ CommutativeRing,Algebra(Fraction(Integer)))
+ [85] D1 > FourierSeries(D1,D2) from FourierSeries(D1,D2)
+ if D1 has Join(CommutativeRing,Algebra(Fraction(Integer)))
+ and D2 has Join(OrderedSet,AbelianGroup)
+ [86] Fraction(Polynomial(Fraction(D2))) > D from D
+ if D2 has INTDOM and D2 has ORDSET and D has FS(D2)
+ [87] Polynomial(Fraction(D2)) > D from D
+ if D2 has INTDOM and D2 has ORDSET and D has FS(D2)
+ [88] Fraction(D2) > D from D if D2 has INTDOM and D2 has ORDSET and
+ D has FS(D2)
+ [89] SparseMultivariatePolynomial(D2,Kernel(D)) > D from D
+ if D2 has RING and D2 has ORDSET and D has FS(D2)
+ [90] FortranScalarType > SExpression from FortranScalarType
+ [91] FortranScalarType > Symbol from FortranScalarType
+ [92] Symbol > FortranScalarType from FortranScalarType
+ [93] String > FortranScalarType from FortranScalarType
+ [94] FortranScalarType > FortranType from FortranType
+ [95] FortranType > OutputForm from FortranType
+ [96] Record(localSymbols: SymbolTable,code: List(FortranCode)) > D
+ from D
+ if D has FVC
+ [97] FortranCode > D from D if D has FVC
+ [98] List(FortranCode) > D from D if D has FVC
+ [99] Vector(MachineFloat) > D from D if D has FVC
+ [100] Record(localSymbols: SymbolTable,code: List(FortranCode)) > D
+ from D
+ if D has FVFUN
+ [101] FortranCode > D from D if D has FVFUN
+ [102] List(FortranCode) > D from D if D has FVFUN
+ [103] UnivariatePuiseuxSeries(D2,D3,D4) >
+ GeneralUnivariatePowerSeries(D2,D3,D4)
+ from GeneralUnivariatePowerSeries(D2,D3,D4)
+ if D2 has RING and D3: SYMBOL and D4: D2
+ [104] Variable(D3) > GeneralUnivariatePowerSeries(D2,D3,D4)
+ from GeneralUnivariatePowerSeries(D2,D3,D4)
+ if D3: SYMBOL and D2 has RING and D4: D2
+ [105] Heap(D2) > OutputForm from Heap(D2) if D2 has SETCAT and D2
+ has ORDSET
+ [106] HexadecimalExpansion > RadixExpansion(16) from
+ HexadecimalExpansion
+ [107] HexadecimalExpansion > Fraction(Integer) from
+ HexadecimalExpansion
+ [108] OutputForm > String from HTMLFormat
+ [109] String > IndexCard from IndexCard
+ [110] List(D5) > PolynomialIdeals(D2,D3,D4,D5)
+ from PolynomialIdeals(D2,D3,D4,D5)
+ if D5 has POLYCAT(D2,D3,D4) and D2 has FIELD and D3 has
+ OAMONS and D4 has ORDSET
+ [111] D1 > AssociatedJordanAlgebra(D2,D1) from
+ AssociatedJordanAlgebra(D2,D1)
+ if D2 has COMRING and D1 has NAALG(D2)
+ [112] D > D1 from D if D has KOERCE(D1) and D1 has TYPE
+ [113] D1 > D from D if D has LALG(D1) and D1 has RING
+ [114] D1 > AssociatedLieAlgebra(D2,D1) from AssociatedLieAlgebra(D2
+ ,D1)
+ if D2 has COMRING and D1 has NAALG(D2)
+ [115] D > Stream(Record(k: Integer,c: D2)) from D
+ if D has LOCPOWC(D2) and D2 has FIELD
+ [116] Stream(Record(k: Integer,c: D2)) > D from D
+ if D2 has FIELD and D has LOCPOWC(D2)
+ [117] ThreeDimensionalMatrix(D2) > PrimitiveArray(PrimitiveArray(
+ PrimitiveArray(D2)))
+ from ThreeDimensionalMatrix(D2) if D2 has SETCAT
+ [118] PrimitiveArray(PrimitiveArray(PrimitiveArray(D2))) >
+ ThreeDimensionalMatrix(D2)
+ from ThreeDimensionalMatrix(D2) if D2 has SETCAT
+ [119] D2 > (() > D2) from MappingPackage1(D2) if D2 has SETCAT
+ [120] D1 > D from D
+ if D2 has RING and D has MATCAT(D2,D3,D1) and D3 has FLAGG
+ (D2) and D1 has FLAGG(D2)
+ [121] MachineComplex > Complex(Float) from MachineComplex
+ [122] Complex(MachineInteger) > MachineComplex from MachineComplex
+
+ [123] Complex(MachineFloat) > MachineComplex from MachineComplex
+
+ [124] Complex(Integer) > MachineComplex from MachineComplex
+ [125] Complex(Float) > MachineComplex from MachineComplex
+ [126] MachineInteger > MachineFloat from MachineFloat
+ [127] MachineFloat > Float from MachineFloat
+ [128] Expression(Integer) > Expression(MachineInteger) from
+ MachineInteger
+ [129] OutputForm > String from MathMLFormat
+ [130] Fraction(MyUnivariatePolynomial(D2,D3)) > MyExpression(D2,D3)
+ from MyExpression(D2,D3)
+ if D2: SYMBOL and D3 has Join(Ring,OrderedSet,
+ IntegralDomain)
+ [131] Polynomial(D3) > MyUnivariatePolynomial(D2,D3)
+ from MyUnivariatePolynomial(D2,D3) if D3 has RING and D2:
+ SYMBOL
+ [132] Variable(D2) > MyUnivariatePolynomial(D2,D3)
+ from MyUnivariatePolynomial(D2,D3) if D2: SYMBOL and D3
+ has RING
+ [133] D1 > MyUnivariatePolynomial(D2,D1) from
+ MyUnivariatePolynomial(D2,D1)
+ if D2: SYMBOL and D1 has RING
+ [134] Integer > D from D if D has NASRING
+ [135] Union(nia: Record(var: Symbol,fn: Expression(DoubleFloat),
+ range: Segment(OrderedCompletion(DoubleFloat)),abserr:
+ DoubleFloat,relerr: DoubleFloat),mdnia: Record(fn: Expression(
+ DoubleFloat),range: List(Segment(OrderedCompletion(DoubleFloat)))
+ ,abserr: DoubleFloat,relerr: DoubleFloat)) >
+ NumericalIntegrationProblem
+ from NumericalIntegrationProblem
+ [136] Record(fn: Expression(DoubleFloat),range: List(Segment(
+ OrderedCompletion(DoubleFloat))),abserr: DoubleFloat,relerr:
+ DoubleFloat) > NumericalIntegrationProblem
+ from NumericalIntegrationProblem
+ [137] Record(var: Symbol,fn: Expression(DoubleFloat),range: Segment(
+ OrderedCompletion(DoubleFloat)),abserr: DoubleFloat,relerr:
+ DoubleFloat) > NumericalIntegrationProblem
+ from NumericalIntegrationProblem
+ [138] NumericalIntegrationProblem > OutputForm
+ from NumericalIntegrationProblem
+ [139] D2 > None from NoneFunctions1(D2) if D2 has TYPE
+ [140] Record(xinit: DoubleFloat,xend: DoubleFloat,fn: Vector(
+ Expression(DoubleFloat)),yinit: List(DoubleFloat),intvals: List(
+ DoubleFloat),g: Expression(DoubleFloat),abserr: DoubleFloat,
+ relerr: DoubleFloat) > NumericalODEProblem
+ from NumericalODEProblem
+ [141] NumericalODEProblem > OutputForm from NumericalODEProblem
+ [142] OrdinaryDifferentialRing(D2,D1,D3) > D1
+ from OrdinaryDifferentialRing(D2,D1,D3)
+ if D1 has PDRING(D2) and D2 has SETCAT and D3: D2
+ [143] D1 > OrdinaryDifferentialRing(D2,D1,D3)
+ from OrdinaryDifferentialRing(D2,D1,D3)
+ if D2 has SETCAT and D3: D2 and D1 has PDRING(D2)
+ [144] Symbol > OpenMathErrorKind from OpenMathErrorKind
+ [145] Union(noa: Record(fn: Expression(DoubleFloat),init: List(
+ DoubleFloat),lb: List(OrderedCompletion(DoubleFloat)),cf: List(
+ Expression(DoubleFloat)),ub: List(OrderedCompletion(DoubleFloat))
+ ),lsa: Record(lfn: List(Expression(DoubleFloat)),init: List(
+ DoubleFloat))) > NumericalOptimizationProblem
+ from NumericalOptimizationProblem
+ [146] Record(lfn: List(Expression(DoubleFloat)),init: List(
+ DoubleFloat)) > NumericalOptimizationProblem
+ from NumericalOptimizationProblem
+ [147] Record(fn: Expression(DoubleFloat),init: List(DoubleFloat),lb
+ : List(OrderedCompletion(DoubleFloat)),cf: List(Expression(
+ DoubleFloat)),ub: List(OrderedCompletion(DoubleFloat))) >
+ NumericalOptimizationProblem
+ from NumericalOptimizationProblem
+ [148] NumericalOptimizationProblem > OutputForm
+ from NumericalOptimizationProblem
+ [149] Integer > OrdSetInts from OrdSetInts
+ [150] Color > Palette from Palette
+ [151] Polynomial(AlgebraicNumber) > Expression(Integer)
+ from PolynomialAN2Expression
+ [152] Fraction(Polynomial(AlgebraicNumber)) > Expression(Integer)
+ from PolynomialAN2Expression
+ [153] Record(pde: List(Expression(DoubleFloat)),constraints: List(
+ Record(start: DoubleFloat,finish: DoubleFloat,grid:
+ NonNegativeInteger,boundaryType: Integer,dStart: Matrix(
+ DoubleFloat),dFinish: Matrix(DoubleFloat))),f: List(List(
+ Expression(DoubleFloat))),st: String,tol: DoubleFloat) >
+ NumericalPDEProblem
+ from NumericalPDEProblem
+ [154] NumericalPDEProblem > OutputForm from NumericalPDEProblem
+ [155] PendantTree(D2) > Tree(D2) from PendantTree(D2) if D2 has
+ SETCAT
+ [156] List(Permutation(D2)) > PermutationGroup(D2) from
+ PermutationGroup(D2)
+ if D2 has SETCAT
+ [157] PermutationGroup(D2) > List(Permutation(D2)) from
+ PermutationGroup(D2)
+ if D2 has SETCAT
+ [158] List(D2) > Permutation(D2) from Permutation(D2) if D2 has
+ SETCAT
+ [159] List(List(D2)) > Permutation(D2) from Permutation(D2) if D2
+ has SETCAT
+ [160] Fraction(Factored(D2)) > PartialFraction(D2) from
+ PartialFraction(D2)
+ if D2 has EUCDOM
+ [161] PartialFraction(D2) > Fraction(D2) from PartialFraction(D2)
+ if D2 has EUCDOM
+ [162] Pi > Expression(D3) from PiCoercions(D3)
+ if D3 has Join(OrderedSet,IntegralDomain)
+ [163] List(D2) > D from D if D2 has FIELD and D has PRSPCAT(D2)
+ [164] D > List(D2) from D if D has PRSPCAT(D2) and D2 has FIELD
+ [165] Queue(D2) > OutputForm from Queue(D2) if D2 has SETCAT and D2
+ has SETCAT
+ [166] RadixExpansion(D2) > Fraction(Integer) from RadixExpansion(D2
+ ) if D2: INT
+ [167] D2 > Void from ResolveLatticeCompletion(D2) if D2 has TYPE
+
+ [168] Exit > D1 from ResolveLatticeCompletion(D1) if D1 has TYPE
+
+ [169] D1 > D from D if D has RETRACT(D1) and D1 has TYPE
+ [170] D2 > Fraction(Polynomial(D2)) from RationalFunction(D2) if D2
+ has INTDOM
+ [171] Integer > D from D if D has RING
+ [172] SparseEchelonMatrix(D2,D3) > Matrix(D3) from
+ SparseEchelonMatrix(D2,D3)
+ if D2 has ORDSET and D3 has RING
+ [173] D > OutputForm from D if D has SPACEC(D2) and D2 has RING
+ [174] Character > D from D if D has SRAGG
+ [175] Stack(D2) > OutputForm from Stack(D2) if D2 has SETCAT and D2
+ has SETCAT
+ [176] List(D2) > Stream(D2) from Stream(D2) if D2 has TYPE
+ [177] Symbol > Switch from Switch
+ [178] String > Symbol from Symbol
+ [179] SymbolTable > Table(Symbol,FortranType) from SymbolTable
+ [180] Tableau(D2) > OutputForm from Tableau(D2) if D2 has SETCAT
+
+ [181] D2 > TexFormat from TexFormat1(D2) if D2 has SETCAT
+ [182] OutputForm > TexFormat from TexFormat
+ [183] Polynomial(D2) > TaylorSeries(D2) from TaylorSeries(D2) if D2
+ has RING
+ [184] Symbol > TaylorSeries(D2) from TaylorSeries(D2) if D2 has
+ RING
+ [185] Variable(QUOTE(x)) > UnivariateFormalPowerSeries(D2)
+ from UnivariateFormalPowerSeries(D2) if D2 has RING
+ [186] UnivariatePolynomial(QUOTE(x),D2) >
+ UnivariateFormalPowerSeries(D2)
+ from UnivariateFormalPowerSeries(D2) if D2 has RING
+ [187] D1 > D from D if D2 has RING and D has ULSCCAT(D2,D1) and D1
+ has UTSCAT(D2)
+ [188] Segment(D2) > UniversalSegment(D2) from UniversalSegment(D2)
+ if D2 has TYPE
+ [189] Variable(D2) > UnivariatePolynomial(D2,D3)
+ from UnivariatePolynomial(D2,D3) if D2: SYMBOL and D3 has
+ RING
+ [190] D1 > D from D if D2 has RING and D has UPXSCCA(D2,D1) and D1
+ has ULSCAT(D2)
+ [191] Variable(D3) > UnivariateTaylorSeriesCZero(D2,D3)
+ from UnivariateTaylorSeriesCZero(D2,D3) if D3: SYMBOL and
+ D2 has RING
+ [192] UnivariatePolynomial(D3,D2) > UnivariateTaylorSeriesCZero(D2,
+ D3)
+ from UnivariateTaylorSeriesCZero(D2,D3) if D2 has RING and
+ D3: SYMBOL
+ [193] Void > OutputForm from Void
+ [194] D1 > D from D if D has XALG(D1) and D1 has RING
+ [195] D1 > D from D if D has XFALG(D1,D2) and D1 has ORDSET and D2
+ has RING
+
+There are 50 unexposed functions called coerce :
+ [1] Vector(Matrix(D3)) > Vector(Matrix(Fraction(Polynomial(D3))))
+ from CoerceVectorMatrixPackage(D3) if D3 has COMRING
+ [2] List(Integer) > ExtAlgBasis from ExtAlgBasis
+ [3] EuclideanModularRing(D2,D1,D3,D4,D5,D6) > D1
+ from EuclideanModularRing(D2,D1,D3,D4,D5,D6)
+ if D1 has UPOLYC(D2) and D2 has COMRING and D3 has ABELMON
+ and D4: ((D1,D3) > D1) and D5: ((D3,D3) > Union(D3,
+ "failed")) and D6: ((D1,D1,D3) > Union(D1,"failed"))
+ [4] UnivariatePuiseuxSeries(D3,D4,D5) > ExponentialExpansion(D2,D3,
+ D4,D5)
+ from ExponentialExpansion(D2,D3,D4,D5)
+ if D3 has Join(AlgebraicallyClosedField,
+ TranscendentalFunctionCategory,FunctionSpace(D2)) and D4:
+ SYMBOL and D5: D3 and D2 has Join(OrderedSet,RetractableTo(
+ Integer),LinearlyExplicitRingOver(Integer),GcdDomain)
+ [5] Vector(Fraction(Polynomial(D2))) > GenericNonAssociativeAlgebra
+ (D2,D3,D4,D5)
+ from GenericNonAssociativeAlgebra(D2,D3,D4,D5)
+ if D2 has COMRING and D5: VECTOR(MATRIX(D2)) and D3: PI
+ and D4: LIST(SYMBOL)
+ [6] List(List(Point(DoubleFloat))) > GraphImage from GraphImage
+ [7] GraphImage > OutputForm from GraphImage
+ [8] SparseMultivariatePolynomial(Integer,Kernel(InnerAlgebraicNumber
+ )) > InnerAlgebraicNumber
+ from InnerAlgebraicNumber
+ [9] LieExponentials(D2,D3,D4) > XPBWPolynomial(D2,D3)
+ from LieExponentials(D2,D3,D4)
+ if D2 has ORDSET and D3 has Join(CommutativeRing,Module(
+ Fraction(Integer))) and D4: PI
+ [10] LieExponentials(D2,D3,D4) > XDistributedPolynomial(D2,D3)
+ from LieExponentials(D2,D3,D4)
+ if D2 has ORDSET and D3 has Join(CommutativeRing,Module(
+ Fraction(Integer))) and D4: PI
+ [11] LyndonWord(D2) > Magma(D2) from LyndonWord(D2) if D2 has
+ ORDSET
+ [12] LyndonWord(D2) > OrderedFreeMonoid(D2) from LyndonWord(D2) if
+ D2 has ORDSET
+ [13] Magma(D2) > OrderedFreeMonoid(D2) from Magma(D2) if D2 has
+ ORDSET
+ [14] D1 > MakeCachableSet(D1) from MakeCachableSet(D1) if D1 has
+ SETCAT
+ [15] ModularField(D1,D2,D3,D4,D5) > D1 from ModularField(D1,D2,D3,
+ D4,D5)
+ if D1 has COMRING and D2 has ABELMON and D3: ((D1,D2) >
+ D1) and D4: ((D2,D2) > Union(D2,"failed")) and D5: ((D1,D1
+ ,D2) > Union(D1,"failed"))
+ [16] D1 > ModMonic(D2,D1) from ModMonic(D2,D1)
+ if D2 has RING and D1 has UPOLYC(D2)
+ [17] ModuleMonomial(D2,D3,D4) > Record(index: D2,exponent: D3)
+ from ModuleMonomial(D2,D3,D4)
+ if D2 has ORDSET and D3 has SETCAT and D4: ((Record(index
+ : D2,exponent: D3),Record(index: D2,exponent: D3)) >
+ Boolean)
+ [18] Record(index: D2,exponent: D3) > ModuleMonomial(D2,D3,D4)
+ from ModuleMonomial(D2,D3,D4)
+ if D2 has ORDSET and D3 has SETCAT and D4: ((Record(index
+ : D2,exponent: D3),Record(index: D2,exponent: D3)) >
+ Boolean)
+ [19] ModularRing(D1,D2,D3,D4,D5) > D1 from ModularRing(D1,D2,D3,D4,
+ D5)
+ if D1 has COMRING and D2 has ABELMON and D3: ((D1,D2) >
+ D1) and D4: ((D2,D2) > Union(D2,"failed")) and D5: ((D1,D1
+ ,D2) > Union(D1,"failed"))
+ [20] List(Record(coef: D2,monom: D3)) > MonoidRing(D2,D3)
+ from MonoidRing(D2,D3) if D2 has RING and D3 has MONOID
+
+ [21] Variable(D2) > UnivariateSkewPolynomial(D2,D3,D4,D5)
+ from UnivariateSkewPolynomial(D2,D3,D4,D5)
+ if D2: SYMBOL and D3 has RING and D4: AUTOMOR(D3) and D5:
+ (D3 > D3)
+ [22] Polynomial(D2) > OrdinaryWeightedPolynomials(D2,D3,D4,D5)
+ from OrdinaryWeightedPolynomials(D2,D3,D4,D5)
+ if D2 has RING and D3: LIST(SYMBOL) and D4: LIST(NNI) and
+ D5: NNI
+ [23] OrdinaryWeightedPolynomials(D2,D3,D4,D5) > Polynomial(D2)
+ from OrdinaryWeightedPolynomials(D2,D3,D4,D5)
+ if D2 has RING and D3: LIST(SYMBOL) and D4: LIST(NNI) and
+ D5: NNI
+ [24] D1 > PoincareBirkhoffWittLyndonBasis(D1)
+ from PoincareBirkhoffWittLyndonBasis(D1) if D1 has ORDSET
+
+ [25] PoincareBirkhoffWittLyndonBasis(D2) > OrderedFreeMonoid(D2)
+ from PoincareBirkhoffWittLyndonBasis(D2) if D2 has ORDSET
+
+ [26] Partition > List(Integer) from Partition
+ [27] D1 > ResidueRing(D2,D3,D4,D1,D5) from ResidueRing(D2,D3,D4,D1,
+ D5)
+ if D2 has FIELD and D3 has OAMONS and D4 has ORDSET and D1
+ has POLYCAT(D2,D3,D4) and D5: LIST(D1)
+ [28] RectangularMatrix(D2,D3,D4) > Matrix(D4)
+ from RectangularMatrix(D2,D3,D4) if D2: NNI and D3: NNI
+ and D4 has RING
+ [29] D1 > SparseMultivariateTaylorSeries(D2,D3,D1)
+ from SparseMultivariateTaylorSeries(D2,D3,D1)
+ if D2 has RING and D3 has ORDSET and D1 has POLYCAT(D2,
+ INDE(D3),D3)
+ [30] D1 > SparseMultivariateTaylorSeries(D2,D1,D3)
+ from SparseMultivariateTaylorSeries(D2,D1,D3)
+ if D2 has RING and D1 has ORDSET and D3 has POLYCAT(D2,
+ INDE(D1),D1)
+ [31] SquareMatrix(D2,D3) > Matrix(D3) from SquareMatrix(D2,D3)
+ if D2: NNI and D3 has RING
+ [32] D2 > Stream(D2) from StreamTaylorSeriesOperations(D2) if D2
+ has RING
+ [33] Variable(D3) > SparseUnivariateLaurentSeries(D2,D3,D4)
+ from SparseUnivariateLaurentSeries(D2,D3,D4)
+ if D3: SYMBOL and D2 has RING and D4: D2
+ [34] Variable(D3) > SparseUnivariatePuiseuxSeries(D2,D3,D4)
+ from SparseUnivariatePuiseuxSeries(D2,D3,D4)
+ if D3: SYMBOL and D2 has RING and D4: D2
+ [35] Variable(D3) > SparseUnivariateTaylorSeries(D2,D3,D4)
+ from SparseUnivariateTaylorSeries(D2,D3,D4)
+ if D3: SYMBOL and D2 has RING and D4: D2
+ [36] UnivariatePolynomial(D3,D2) > SparseUnivariateTaylorSeries(D2,
+ D3,D4)
+ from SparseUnivariateTaylorSeries(D2,D3,D4)
+ if D2 has RING and D3: SYMBOL and D4: D2
+ [37] PrimitiveArray(D2) > Tuple(D2) from Tuple(D2) if D2 has TYPE
+
+ [38] Variable(D3) > UnivariateLaurentSeries(D2,D3,D4)
+ from UnivariateLaurentSeries(D2,D3,D4)
+ if D3: SYMBOL and D2 has RING and D4: D2
+ [39] Variable(D3) > UnivariatePuiseuxSeries(D2,D3,D4)
+ from UnivariatePuiseuxSeries(D2,D3,D4)
+ if D3: SYMBOL and D2 has RING and D4: D2
+ [40] Variable(D3) > UnivariateTaylorSeries(D2,D3,D4)
+ from UnivariateTaylorSeries(D2,D3,D4)
+ if D3: SYMBOL and D2 has RING and D4: D2
+ [41] UnivariatePolynomial(D3,D2) > UnivariateTaylorSeries(D2,D3,D4)
+ from UnivariateTaylorSeries(D2,D3,D4)
+ if D2 has RING and D3: SYMBOL and D4: D2
+ [42] Variable(D2) > Symbol from Variable(D2) if D2: SYMBOL
+ [43] TwoDimensionalViewport > OutputForm from
+ TwoDimensionalViewport
+ [44] GraphImage > TwoDimensionalViewport from ViewportPackage
+ [45] D1 > WeightedPolynomials(D2,D3,D4,D1,D5,D6,D7)
+ from WeightedPolynomials(D2,D3,D4,D1,D5,D6,D7)
+ if D2 has RING and D3 has ORDSET and D4 has OAMONS and D5
+ : LIST(D3) and D1 has POLYCAT(D2,D4,D3) and D6: LIST(NNI)
+ and D7: NNI
+ [46] WeightedPolynomials(D2,D3,D4,D1,D5,D6,D7) > D1
+ from WeightedPolynomials(D2,D3,D4,D1,D5,D6,D7)
+ if D1 has POLYCAT(D2,D4,D3) and D2 has RING and D3 has
+ ORDSET and D4 has OAMONS and D5: LIST(D3) and D6: LIST(NNI)
+ and D7: NNI
+ [47] XPBWPolynomial(D2,D3) > XRecursivePolynomial(D2,D3)
+ from XPBWPolynomial(D2,D3) if D2 has ORDSET and D3 has
+ COMRING
+ [48] XPBWPolynomial(D2,D3) > XDistributedPolynomial(D2,D3)
+ from XPBWPolynomial(D2,D3) if D2 has ORDSET and D3 has
+ COMRING
+ [49] LiePolynomial(D2,D3) > XPBWPolynomial(D2,D3) from
+ XPBWPolynomial(D2,D3)
+ if D2 has ORDSET and D3 has COMRING
+ [50] D1 > XPolynomialRing(D2,D1) from XPolynomialRing(D2,D1)
+ if D2 has RING and D1 has ORDMON
+Examples of coerce from AffineSpaceCategory
+
+
+Examples of coerce from Algebra
+
+
+Examples of coerce from AlgebraGivenByStructuralConstants
+
+
+Examples of coerce from AlgebraicNumber
+
+
+Examples of coerce from AnyFunctions1
+
+
+Examples of coerce from Asp10
+
+
+Examples of coerce from Asp19
+
+
+Examples of coerce from Asp1
+
+
+Examples of coerce from Asp20
+
+
+Examples of coerce from Asp24
+
+
+Examples of coerce from Asp31
+
+
+Examples of coerce from Asp35
+
+
+Examples of coerce from Asp41
+
+
+Examples of coerce from Asp42
+
+
+Examples of coerce from Asp49
+
+
+Examples of coerce from Asp4
+
+
+Examples of coerce from Asp50
+
+
+Examples of coerce from Asp55
+
+
+Examples of coerce from Asp6
+
+
+Examples of coerce from Asp73
+
+
+Examples of coerce from Asp74
+
+
+Examples of coerce from Asp77
+
+
+Examples of coerce from Asp78
+
+
+Examples of coerce from Asp7
+
+
+Examples of coerce from Asp80
+
+
+Examples of coerce from Asp9
+
+
+Examples of coerce from ArrayStack
+
+a:ArrayStack INT:= arrayStack [1,2,3,4,5]
+coerce a
+
+
+Examples of coerce from BinaryExpansion
+
+
+Examples of coerce from BlowUpMethodCategory
+
+
+Examples of coerce from CartesianTensor
+
+v:=[2,3]
+tv:CartesianTensor(1,2,Integer):=v
+tm:CartesianTensor(1,2,Integer):=[tv,tv]
+
+v:=[2,3]
+tv:CartesianTensor(1,2,Integer):=v
+
+v:SquareMatrix(2,Integer):=[[1,2],[3,4]]
+tv:CartesianTensor(1,2,Integer):=v
+
+v:DirectProduct(2,Integer):=directProduct [3,4]
+tv:CartesianTensor(1,2,Integer):=v
+
+
+Examples of coerce from CoerceVectorMatrixPackage
+
+
+Examples of coerce from Database
+
+
+Examples of coerce from DecimalExpansion
+
+
+Examples of coerce from Dequeue
+
+a:Dequeue INT:= dequeue [1,2,3,4,5]
+coerce a
+
+
+Examples of coerce from DirichletRing
+
+
+Examples of coerce from DataList
+
+
+Examples of coerce from DrawNumericHack
+
+
+Examples of coerce from DifferentialVariableCategory
+
+
+Examples of coerce from ExtAlgBasis
+
+
+Examples of coerce from EuclideanModularRing
+
+
+Examples of coerce from ExponentialExpansion
+
+
+Examples of coerce from FortranCode
+
+
+Examples of coerce from FortranExpression
+
+
+Examples of coerce from FiniteFieldHomomorphisms
+
+
+Examples of coerce from FreeLieAlgebra
+
+
+Examples of coerce from FortranMatrixCategory
+
+
+Examples of coerce from FortranMatrixFunctionCategory
+
+
+Examples of coerce from FileNameCategory
+
+
+Examples of coerce from ScriptFormulaFormat1
+
+
+Examples of coerce from ScriptFormulaFormat
+
+
+Examples of coerce from FortranFunctionCategory
+
+
+Examples of coerce from FortranProgram
+
+
+Examples of coerce from FourierSeries
+
+
+Examples of coerce from FunctionSpace
+
+
+Examples of coerce from FortranScalarType
+
+
+Examples of coerce from FortranType
+
+
+Examples of coerce from FortranVectorCategory
+
+
+Examples of coerce from FortranVectorFunctionCategory
+
+
+Examples of coerce from GenericNonAssociativeAlgebra
+
+
+Examples of coerce from GraphImage
+
+
+Examples of coerce from GeneralUnivariatePowerSeries
+
+
+Examples of coerce from Heap
+
+a:Heap INT:= heap [1,2,3,4,5]
+coerce a
+
+
+Examples of coerce from HexadecimalExpansion
+
+
+Examples of coerce from HTMLFormat
+
+coerce(sqrt(3+x)::OutputForm)$HTMLFORM
+
+
+Examples of coerce from InnerAlgebraicNumber
+
+
+Examples of coerce from IndexCard
+
+
+Examples of coerce from PolynomialIdeals
+
+
+Examples of coerce from AssociatedJordanAlgebra
+
+
+Examples of coerce from CoercibleTo
+
+
+Examples of coerce from LeftAlgebra
+
+
+Examples of coerce from LieExponentials
+
+
+Examples of coerce from AssociatedLieAlgebra
+
+
+Examples of coerce from LocalPowerSeriesCategory
+
+
+Examples of coerce from LyndonWord
+
+
+Examples of coerce from ThreeDimensionalMatrix
+
+
+Examples of coerce from Magma
+
+
+Examples of coerce from MappingPackage1
+
+
+Examples of coerce from MatrixCategory
+
+coerce([1,2,3])@Matrix(INT)
+
+
+Examples of coerce from MachineComplex
+
+
+Examples of coerce from MachineFloat
+
+
+Examples of coerce from MachineInteger
+
+
+Examples of coerce from MakeCachableSet
+
+
+Examples of coerce from MathMLFormat
+
+
+Examples of coerce from ModularField
+
+
+Examples of coerce from ModMonic
+
+
+Examples of coerce from ModuleMonomial
+
+
+Examples of coerce from ModularRing
+
+
+Examples of coerce from MonoidRing
+
+
+Examples of coerce from MyExpression
+
+
+Examples of coerce from MyUnivariatePolynomial
+
+
+Examples of coerce from NonAssociativeRing
+
+
+Examples of coerce from NumericalIntegrationProblem
+
+
+Examples of coerce from NoneFunctions1
+
+
+Examples of coerce from NumericalODEProblem
+
+
+Examples of coerce from OrdinaryDifferentialRing
+
+
+Examples of coerce from OpenMathErrorKind
+
+
+Examples of coerce from NumericalOptimizationProblem
+
+
+Examples of coerce from UnivariateSkewPolynomial
+
+
+Examples of coerce from OrdSetInts
+
+
+Examples of coerce from OrdinaryWeightedPolynomials
+
+
+Examples of coerce from Palette
+
+
+Examples of coerce from PolynomialAN2Expression
+
+
+Examples of coerce from PoincareBirkhoffWittLyndonBasis
+
+
+Examples of coerce from NumericalPDEProblem
+
+
+Examples of coerce from PendantTree
+
+t1:=ptree([1,2,3])
+t2:=ptree(t1,ptree([1,2,3]))
+t2::Tree List PositiveInteger
+
+
+Examples of coerce from PermutationGroup
+
+y : PERM INT := [[3,5,7,9]]
+z : PERM INT := [1,3,11]
+g : PERMGRP INT := [ y , z ]
+
+x : PERM INT := [[1,3,5],[7,11,9]]
+
+
+Examples of coerce from Permutation
+
+
+Examples of coerce from PartialFraction
+
+(13/74)::PFR(INT)
+
+a:=(13/74)::PFR(INT)
+a::FRAC(INT)
+
+
+Examples of coerce from PiCoercions
+
+
+Examples of coerce from ProjectiveSpaceCategory
+
+
+Examples of coerce from Partition
+
+
+Examples of coerce from Queue
+
+a:Queue INT:= queue [1,2,3,4,5]
+coerce a
+
+
+Examples of coerce from RadixExpansion
+
+
+Examples of coerce from ResolveLatticeCompletion
+
+
+Examples of coerce from ResidueRing
+
+
+Examples of coerce from RetractableTo
+
+
+Examples of coerce from RationalFunction
+
+
+Examples of coerce from Ring
+
+
+Examples of coerce from RectangularMatrix
+
+
+Examples of coerce from SparseEchelonMatrix
+
+
+Examples of coerce from SparseMultivariateTaylorSeries
+
+
+Examples of coerce from ThreeSpaceCategory
+
+
+Examples of coerce from SquareMatrix
+
+
+Examples of coerce from StringAggregate
+
+
+Examples of coerce from Stack
+
+a:Stack INT:= stack [1,2,3,4,5]
+coerce a
+
+
+Examples of coerce from Stream
+
+m:=[1,2,3,4,5,6,7,8,9,10,11,12]
+coerce(m)@Stream(Integer)
+m::Stream(Integer)
+
+
+Examples of coerce from StreamTaylorSeriesOperations
+
+
+Examples of coerce from SparseUnivariateLaurentSeries
+
+
+Examples of coerce from SparseUnivariatePuiseuxSeries
+
+
+Examples of coerce from SparseUnivariateTaylorSeries
+
+
+Examples of coerce from Switch
+
+
+Examples of coerce from Symbol
+
+
+Examples of coerce from SymbolTable
+
+
+Examples of coerce from Tableau
+
+
+Examples of coerce from TexFormat1
+
+
+Examples of coerce from TexFormat
+
+
+Examples of coerce from TaylorSeries
+
+
+Examples of coerce from Tuple
+
+t1:PrimitiveArray(Integer):= [i for i in 1..10]
+t2:=coerce(t1)$Tuple(Integer)
+
+
+Examples of coerce from UnivariateFormalPowerSeries
+
+
+Examples of coerce from UnivariateLaurentSeriesConstructorCategory
+
+
+Examples of coerce from UnivariateLaurentSeries
+
+
+Examples of coerce from UniversalSegment
+
+
+Examples of coerce from UnivariatePolynomial
+
+
+Examples of coerce from UnivariatePuiseuxSeriesConstructorCategory
+
+
+Examples of coerce from UnivariatePuiseuxSeries
+
+
+Examples of coerce from UnivariateTaylorSeries
+
+
+Examples of coerce from UnivariateTaylorSeriesCZero
+
+
+Examples of coerce from Variable
+
+
+Examples of coerce from TwoDimensionalViewport
+
+
+Examples of coerce from ViewportPackage
+
+
+Examples of coerce from Void
+
+
+Examples of coerce from WeightedPolynomials
+
+
+Examples of coerce from XAlgebra
+
+
+Examples of coerce from XFreeAlgebra
+
+
+Examples of coerce from XPBWPolynomial
+
+
+Examples of coerce from XPolynomialRing
+
+(1) >
\ No newline at end of file
diff git a/src/axiomwebsite/patches.html b/src/axiomwebsite/patches.html
index 797814f..33a6136 100644
 a/src/axiomwebsite/patches.html
+++ b/src/axiomwebsite/patches.html
@@ 5558,6 +5558,8 @@ books/bookvolbib add Hamm05, Quality Computed Solutions
books/bookvolbib add Hamm05, Quality Computed Solutions
20160918.01.tpd.patch
books/bookvol10.5 add Sven Hammarling chapter
+20160925.01.tpd.patch
+src/interp/format.lisp bug 7237: coerce failure fixed
diff git a/src/interp/format.lisp.pamphlet b/src/interp/format.lisp.pamphlet
index eace954..99cb6e3 100644
 a/src/interp/format.lisp.pamphlet
+++ b/src/interp/format.lisp.pamphlet
@@ 1513,6 +1513,7 @@ code which fixes bug 7217 bad title generated in Axiom 3D output.
NIL argl NIL)
u1)))))))))
+; TPDHERE modified lisp
; matrix2String x ==
; concat(lbrkSch(),
; tuple2String [outtranRow x.i for i in 0..MAXINDEX x],rbrkSch()) where
@@ 1523,7 +1524,7 @@ code which fixes bug 7217 bad title generated in Axiom 3D output.
(DEFUN matrix2String (x)
(PROG ()
(RETURN
 (concat (lbrkSch)
+ (concat
(tuple2String
((LAMBDA (bfVar#40 bfVar#39 i)
(LOOP
@@ 1533,9 +1534,11 @@ code which fixes bug 7217 bad title generated in Axiom 3D output.
(CONS (matrix2String,outtranRow (ELT x i))
bfVar#40))))
(SETQ i (+ i 1))))
 NIL (MAXINDEX x) 0))
 (rbrkSch)))))
+ NIL (MAXINDEX x) 0))))))
+
(DEFUN matrix2String,outtranRow (x)
+ (if (symbolp x)
+ (concatenate 'string "MATRIX(" (symbolname x) ")")
(PROG ()
(RETURN
(concat (lbrkSch)
@@ 1548,7 +1551,7 @@ code which fixes bug 7217 bad title generated in Axiom 3D output.
(CONS (form2String1 (ELT x i)) bfVar#42))))
(SETQ i (+ i 1))))
NIL (MAXINDEX x) 0))
 (rbrkSch)))))
+ (rbrkSch))))))
; binop2String x ==
; $curExpr : local := x

1.7.5.4